• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Large-scale tensor decomposition for high-level information processing

Research Project

Project/Area Number 25880028
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeSingle-year Grants
Research Field Intelligent informatics
Research InstitutionNational Institute of Informatics

Principal Investigator

HAYASHI Kohei  国立情報学研究所, ビッグデータ数理国際研究センター, 特任助教 (30705059)

Project Period (FY) 2013-08-30 – 2015-03-31
Project Status Completed (Fiscal Year 2014)
Budget Amount *help
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2014: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2013: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords非負行列分解 / Twitter / トピック抽出 / ストリーミング処理 / テンソル分解 / 確率勾配法 / 関係データ解析 / ソーシャルネットワーク解析 / トピックモデル
Outline of Final Research Achievements

We proposed a streaming algorithm of non-negative matrix factorization for a sequence of matrices such as time series. We evaluated its performance by applying to the Twitter stream, which is one of the popular social network services. Our algorithm allows to handle all Japanese tweets in real-time, which tells us what topics are "hot" in that moment for every second.

Report

(3 results)
  • 2014 Annual Research Report   Final Research Report ( PDF )
  • 2013 Annual Research Report
  • Research Products

    (1 results)

All 2015

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Acknowledgement Compliant: 1 results)

  • [Journal Article] Real-time Top-R Topic Detection on Twitter with Topic Hijack Filtering2015

    • Author(s)
      Kohei Hayashi, Takanori Maehara, Masashi Toyoda, Ken-ichi Kawarabayashi
    • Journal Title

      ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2015

      Volume: -

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant

URL: 

Published: 2013-09-12   Modified: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi