• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of Lead Optimization Methods for Protein–Protein Interaction Modulators Using Protein Structures and Artificial Intelligence

Research Project

Project/Area Number 25K02383
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 47010:Pharmaceutical chemistry and drug development sciences-related
Basic Section 47050:Environmental and natural pharmaceutical resources-related
Sections That Are Subject to Joint Review: Basic Section47010:Pharmaceutical chemistry and drug development sciences-related , Basic Section47050:Environmental and natural pharmaceutical resources-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

広川 貴次  筑波大学, 医学医療系, 教授 (20357867)

Co-Investigator(Kenkyū-buntansha) 吉野 龍ノ介  筑波大学, 医学医療系, 助教 (50817575)
吉田 将人  筑波大学, 数理物質系, 教授 (80511906)
Project Period (FY) 2025-04-01 – 2028-03-31
Project Status Granted (Fiscal Year 2025)
Budget Amount *help
¥18,850,000 (Direct Cost: ¥14,500,000、Indirect Cost: ¥4,350,000)
Fiscal Year 2027: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2026: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Fiscal Year 2025: ¥8,450,000 (Direct Cost: ¥6,500,000、Indirect Cost: ¥1,950,000)
Keywordsインシリコ創薬 / PPI阻害 / 人工知能 / タンパク質構造
Outline of Research at the Start

本研究では、タンパク質構造情報とAI技術を統合し、PPI(タンパク質間相互作用)制御分子のリード最適化手法を開発する。従来困難であったPPI標的に対し、ChemTS/SINCHOシステムを基盤に、合成・評価チームと連携してMDM2-p53を対象に実証実験を行う。最適化候補分子をAIで予測・合成・検証し、得られた結果をAIモデルに反映することで、フィードバックループにより最適化精度の向上を図り、創薬支援システムの構築を目指す。

URL: 

Published: 2025-04-17   Modified: 2025-06-20  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi