• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Large scale distributed monte-carlo game-tree search based on probability distribution

Research Project

Project/Area Number 26280130
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Entertainment and game informatics 1
Research InstitutionThe University of Tokyo

Principal Investigator

Yokoyama Daisaku  東京大学, 生産技術研究所, 助教 (80345272)

Co-Investigator(Renkei-kenkyūsha) TSURUOKA Yoshimasa  東京大学, 工学(系)研究科(研究院), 准教授 (50566362)
Project Period (FY) 2014-04-01 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥15,860,000 (Direct Cost: ¥12,200,000、Indirect Cost: ¥3,660,000)
Fiscal Year 2016: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2015: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2014: ¥7,540,000 (Direct Cost: ¥5,800,000、Indirect Cost: ¥1,740,000)
Keywords人工知能 / アルゴリズム / ゲーム情報学
Outline of Final Research Achievements

Large-scale search problems in real world are not applicable exhaustive search; randomized search algorithms have great ability to explore such problems. Game tree search is an example of such problem; Monte-Carlo Tree Search algorithm (MCTS) has been developed and is getting widely used with good performance. This great advance, however, does not help to achieve good performance in Shogi that has long narrow path of 'correct' play.
We propose a new randomized game-tree search algorithm based on Bayesian Approach that can treat evaluated values as probability distributions. In this research we evaluate the effectiveness of our approach using distributed computing method.

Report

(4 results)
  • 2016 Annual Research Report   Final Research Report ( PDF )
  • 2015 Annual Research Report
  • 2014 Annual Research Report
  • Research Products

    (10 results)

All 2016 2015 2014

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Acknowledgement Compliant: 1 results) Presentation (9 results)

  • [Journal Article] ベイジアンアプローチに基づくモンテカルロ木探索アルゴリズムの将棋への適用と評価2014

    • Author(s)
      横山 大作, 喜連川 優
    • Journal Title

      情報処理学会論文誌

      Volume: 55 Pages: 2389-2398

    • NAID

      110009843045

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] 強化学習を用いた効率的な和了を行う麻雀プレイヤ2016

    • Author(s)
      水上直紀,鶴岡慶雅
    • Organizer
      第21回ゲームプログラミングワークショップ
    • Place of Presentation
      箱根セミナーハウス(神奈川県)
    • Year and Date
      2016-11-04
    • Related Report
      2016 Annual Research Report
  • [Presentation] 将棋における個人に適応した着手推定モデルの構築2016

    • Author(s)
      山内智晴,鶴岡慶雅
    • Organizer
      第21回ゲームプログラミングワークショップ
    • Place of Presentation
      箱根セミナーハウス(神奈川県)
    • Year and Date
      2016-11-04
    • Related Report
      2016 Annual Research Report
  • [Presentation] 多人数不完全情報ゲームにおける仮想自己対戦を用いた強化学習2016

    • Author(s)
      河村圭悟,水上直紀,鶴岡慶雅
    • Organizer
      第21回ゲームプログラミングワークショップ
    • Place of Presentation
      箱根セミナーハウス(神奈川県)
    • Year and Date
      2016-11-04
    • Related Report
      2016 Annual Research Report
  • [Presentation] 線形関数近似によるトリックテイキングゲームのQ学習2016

    • Author(s)
      齋藤雄太,鶴岡慶雅
    • Organizer
      第21回ゲームプログラミングワークショップ
    • Place of Presentation
      箱根セミナーハウス(神奈川県)
    • Year and Date
      2016-11-04
    • Related Report
      2016 Annual Research Report
  • [Presentation] 静止探索を用いたArimaa 評価関数の比較学習2015

    • Author(s)
      川上裕生,鶴岡慶雅
    • Organizer
      第20回 ゲームプログラミングワークショップ 2015
    • Place of Presentation
      軽井沢学習研修所 (長野県)
    • Year and Date
      2015-11-06
    • Related Report
      2015 Annual Research Report
  • [Presentation] 期待最終順位の推定に基づくコンピュータ麻雀プレイヤの構築2015

    • Author(s)
      水上直紀,鶴岡慶雅
    • Organizer
      第20回 ゲームプログラミングワークショップ 2015
    • Place of Presentation
      軽井沢学習研修所 (長野県)
    • Year and Date
      2015-11-06
    • Related Report
      2015 Annual Research Report
  • [Presentation] A Randomized Game-Tree Search Algorithm for Shogi Based on Bayesian Approach2014

    • Author(s)
      Daisaku Yokoyama, Masaru Kitsuregawa
    • Organizer
      The 13th Pacific Rim International Conference on Artificial Intelligence (PRICAI 2014)
    • Place of Presentation
      ゴールドコースト、オーストラリア
    • Year and Date
      2014-12-01 – 2014-12-05
    • Related Report
      2014 Annual Research Report
  • [Presentation] Comprehensive Analytics of Large Data Query Processing on Relational Database with SSDs2014

    • Author(s)
      Keisuke Suzuki, Yuto Hayamizu, Daisaku Yokoyama, Miyuki Nakano, Masaru Kitsuregawa
    • Organizer
      The 25th Australasian Database Conference (ADC 2014)
    • Place of Presentation
      ブリスベン、オーストラリア
    • Year and Date
      2014-07-14 – 2014-07-16
    • Related Report
      2014 Annual Research Report
  • [Presentation] A Framework for Large-Scale Train Trip Record Analysis and Its Application to Passengers' Flow Prediction after Train Accidents2014

    • Author(s)
      Daisaku Yokoyama, Masahiko Itoh, Masashi Toyoda, Yoshimitsu Tomita, Satoshi Kawamura, Masaru Kitsuregawa
    • Organizer
      The 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2014)
    • Place of Presentation
      台南、台湾
    • Year and Date
      2014-05-13 – 2014-05-16
    • Related Report
      2014 Annual Research Report

URL: 

Published: 2014-04-04   Modified: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi