Complexes on algebraic varieties and their moduli spaces
Project/Area Number |
26287007
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Partial Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Kobe University |
Principal Investigator |
Yoshioka Kota 神戸大学, 理学研究科, 教授 (40274047)
|
Project Period (FY) |
2014-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥11,440,000 (Direct Cost: ¥8,800,000、Indirect Cost: ¥2,640,000)
Fiscal Year 2017: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2016: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2015: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2014: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
|
Keywords | モジュライ / 複体 / K3 / 安定層 / 安定性 / ベクトル束 / Bridgeland stability |
Outline of Final Research Achievements |
We obtained some results on moduli of semi-stable sheaves on K3 surfaces and abelian surfaces. In particular we described the local structure of the singular points and get an example of strange duality. We also proved Kawamata-Morrison's cone conjectures for two series of irreducible symplectic manifolds of Beauville. For moduli spaces of stable sheaves on Enriques surfaces, we described the condition for the non-emptyness. We also obtained some results on the birational geometry of the moduli spaces by using Bridgeland stability conditions.
|
Academic Significance and Societal Importance of the Research Achievements |
安定層とそのモジュライ空間は微分幾何やYang-Mills理論(インスタントン)と関係し、様々な立場から研究されてきた。本研究では多くのよい性質をもつ曲面であるK3曲面、アーベル曲面、Enriques曲面に対し、そのモジュライ空間の性質を調べた。とくにEnriques曲面上の安定層についてはこれまで研究があまり進んでいなかったが、この研究で安定層の存在性やモジュライの既約性など基本的な問題に成果を得ることができた。
|
Report
(6 results)
Research Products
(22 results)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[Presentation] 代数曲面上のベクトル束2014
Author(s)
吉岡康太
Organizer
第59回代数学シンポジウム
Place of Presentation
東大数理科学研究科
Year and Date
2014-09-08 – 2014-09-11
Related Report
Invited
-