Project/Area Number |
26288041
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Partial Multi-year Fund |
Section | 一般 |
Research Field |
Functional solid state chemistry
|
Research Institution | Osaka City University |
Principal Investigator |
OKADA Keiji 大阪市立大学, 大学院理学研究科, 教授 (50152301)
|
Co-Investigator(Kenkyū-buntansha) |
野崎 浩一 富山大学, 大学院理工学研究部, 教授 (20212128)
|
Research Collaborator |
TAHARA Takuma
KIRA Sayaka
HARAGUCHI Makoto
TANAKA Nobuaki
WADA Tomoyuki
TANIMOTO Ryu
YOKOI Hiroyuki
|
Project Period (FY) |
2014-04-01 – 2017-03-31
|
Project Status |
Completed (Fiscal Year 2016)
|
Budget Amount *help |
¥15,860,000 (Direct Cost: ¥12,200,000、Indirect Cost: ¥3,660,000)
Fiscal Year 2016: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2015: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2014: ¥8,580,000 (Direct Cost: ¥6,600,000、Indirect Cost: ¥1,980,000)
|
Keywords | ラジカル / 金属錯体 / 強磁性相互作用 / スピン軌道相互作用 / 長寿命電荷分離状態 / 金―金親和性相互作用 / スピンエレクトロニクス / 電荷分離 / 磁性 / 伝導性 / クロスカップリング / ラジカルメタロイド / スピン起動相互作用 / 光電荷分離状態 / スピン制御 / 金属 / 酸化還元 |
Outline of Final Research Achievements |
1) Synthesis and Function of Radical-Metalloids: Nitronyl nitroxide-2-ide (NN-2-ide) anion can coordinate on groups 10 and 11 metal ions. These radical metalloids have characteristic feature of low oxidation potential for the NN-moiety. Of these, NN-Au(I)-phosphine complexes are readily prepared and applicable to the Pd(0)-mediated cross-coupling reagent as a NN source. Furthermore, we synthesized a trimer of iminonitroxide (IN)-Au(I), [(IN)-Au(I)]3, in which the three IN radicals ferromagnetically interact in an intramolecular fashion. 2) Photochemically Induced Long Lived Charge Separation States Using Spin-Orbid Coupling of Pt(II) in Donor-Pt-Acceptor Complexes: Photoinduced charge separation in dianisylphenylamine-Pt(II)-naphthalenediimide (D-Pt-NI) triad was investigated. Irradiation of a THF solution of the triad produced the charge separated state with a lifetime of 4.3 microsecond under zero-magnetic field (B = 0 mT) and 9.6 microsecond under B = 270 mT.
|