Project/Area Number |
26289037
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Partial Multi-year Fund |
Section | 一般 |
Research Field |
Fluid engineering
|
Research Institution | Osaka University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
竹内 伸太郎 大阪大学, 工学研究科, 准教授 (50372628)
大森 健史 大阪大学, 工学研究科, 助教 (70467546)
岡林 希依 大阪大学, 工学研究科, 助教 (40774162)
|
Project Period (FY) |
2014-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥16,250,000 (Direct Cost: ¥12,500,000、Indirect Cost: ¥3,750,000)
Fiscal Year 2017: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2016: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2015: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2014: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
|
Keywords | 流体工学 / 混相流 / 乱流 / 粒子 / 数値シミュレーション / 二相伝熱 |
Outline of Final Research Achievements |
Flows containing particles, droplets or bubbles are widely observed in industry and nature and most of them are in turbulence. This study, focusing on solid-liquid two-phase turbulence, dealt with high-concentration condition of solid in which solid particles become dominant in transport phenomena. It is different from previous researches of transportation of sparse solids by fluid turbulence. First, by the direct numerical simulation in which flow around all particles are fully resolved by our original method, particular features of transportation of momentum or heat by solid was elucidated. Then, a volume-averaged equation was derived for the practical use to deal with large scale system and modeling methods of particle motion as well as particle-fluid interaction to be used in the average equation was investigated based on the simulated data.
|
Academic Significance and Societal Importance of the Research Achievements |
粒子が流体によって乱流状態で輸送される現象について、これまで主に調べられてきた低濃度(粒子状物質の飛来や素材のパイプ輸送など、粒子が流体に運ばれる場合)の条件に対して、高濃度(粒子自身が主要な輸送媒体となる場合)に研究領域を広げた。学術的には、現象を解析するための計算方法の開発と、工業装置や自然界にみられる大規模な系を扱うための方程式の構築に対して新たな提案を行った。産業応用に向けては、化学、素材、環境、医療の分野で、反応、分離、精製におけるプロセスの合理化や高度化に寄与する解析技術を進展させた。
|