• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study of the Improvement of Reliabilities of Regulations using a Hierarchical Structure in a Genetic Network

Research Project

Project/Area Number 26330275
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Soft computing
Research InstitutionTottori University

Principal Investigator

KIMURA Shuhei  鳥取大学, 工学研究科, 教授 (20342777)

Research Collaborator OKADA mariko (HATAKEYAMA mariko)  
Project Period (FY) 2014-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2014: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords遺伝子ネットワーク / 階層性 / ブートストラップ法 / 遺伝子ネットワーク同定 / Genetic network / GENIE3 / 階層構造 / 事前知識 / 疑似焼きなまし法 / 階層構造推定
Outline of Final Research Achievements

Genetic network inference methods generally infer many erroneous regulations. To decrease the number of erroneous regulations, this study uses a priori knowledge that biochemical networks exhibit hierarchical structures. This study detects the hierarchical structure in the target network using a hierarchical random graph model proposed by Clauset and colleagues. When the regulations inferred by the inference method are inconsistent with the detected hierarchical structure, we can conclude that they are unreasonable. However, it is not always easy to detect the hierarchical structure in the target network because of the regulations erroneously inferred by the inference method. To obtain a reasonable hierarchical structure, this study first infers many genetic networks from the observed gene expression data by using a bootstrap-based method. We then extract a hierarchical structure from the inferred multiple genetic networks so that it is consistent with most of the networks.

Academic Significance and Societal Importance of the Research Achievements

遺伝子ネットワーク同定は,がんなどの遺伝子を原因とする疾病に対する薬剤の標的遺伝子を見つけるためなどに利用可能と考えられている.本研究では遺伝子ネットワークの同定精度を改善するために,これまでに利用できなかった「ネットワークの階層性」という性質を利用する方法を開発した.提案手法は階層性だけでなく,これまで利用の難しかった複数の知識を利用することが可能と考えられ,さらなる同定精度の改善が期待できる.

Report

(6 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (16 results)

All 2019 2018 2017 2016 2015 2014

All Journal Article (9 results) (of which Peer Reviewed: 8 results,  Open Access: 3 results,  Acknowledgement Compliant: 6 results) Presentation (6 results) (of which Int'l Joint Research: 3 results) Book (1 results)

  • [Journal Article] Inference of Genetic Networks using Random Forests: Assigning Different Weights for Gene Expression Data2019

    • Author(s)
      Kimura Shuhei、Tokuhisa Masato、Okada Mariko
    • Journal Title

      Journal of Bioinformatics and Computational Biology

      Volume: 印刷中 Issue: 04 Pages: 1950015-1950015

    • DOI

      10.1142/s021972001950015x

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] [Regular Paper] Inference of Genetic Networks Using Random Forests: Use of Different Weights for Time-Series and Static Gene Expression Data2018

    • Author(s)
      Kimura Shuhei、Tokuhisa Masato、Okada-Hatakeyama Mariko
    • Journal Title

      Proc. of the 18th IEEE International Conference on Bioinformatics and Bioengineering

      Volume: - Pages: 98-103

    • DOI

      10.1109/bibe.2018.00026

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Inference of Genetic Networks from Time-series of Gene Expression Levels Using Random Forests2017

    • Author(s)
      S.Kimura, M.Tokuhisa and M. Okada-Hatakeyama
    • Journal Title

      Proc. of the 2017 Conference on Computational Intelligence in Bioinformatics and Computational Biology

      Volume: 1 Pages: 22-27

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Simultaneous Execution Method of Gene Clustering and Network Inference2016

    • Author(s)
      S.Kimura, M.Tokuhisa and M. Okada-Hatakeyama
    • Journal Title

      Proc. of the 2016 Conference on Computational Intelligence in Bioinformatics and Computational Biology

      Volume: - Pages: 1-7

    • DOI

      10.1109/cibcb.2016.7758123

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Genetic Network Inference using Hierarchical Structure2016

    • Author(s)
      S.Kimura, M.Tokuhisa, M.Okada-Hatakeyama
    • Journal Title

      Frontiers in Physiology

      Volume: 7 Pages: 57-57

    • DOI

      10.3389/fphys.2016.00057

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Improvement of Reliabilities of Regulations using a Hierarchical Structure in a Genetic Network2015

    • Author(s)
      S.Kimura, M.Okada-Hatakeyama
    • Journal Title

      Proc. of the 2015 International Joint Conference on Neural Networks

      Volume: 1 Pages: 485-491

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] 遺伝子ネットワークのreduced S-systemモデルの効率的同定法の提案2015

    • Author(s)
      木村周平, 佐藤昌直, 岡田眞里子
    • Journal Title

      情報処理学会研究報告

      Volume: 2015-BIO-41 Pages: 1-6

    • NAID

      110009884013

    • Related Report
      2014 Research-status Report
    • Acknowledgement Compliant
  • [Journal Article] An Effective Method for the Inference of Reduced S-system Models of Genetic Networks2014

    • Author(s)
      Shuhei Kimura, Masanao Sato and Mariko Okada-Hatakeyama
    • Journal Title

      IPSJ Transactions on Bioinformatics

      Volume: 7 Issue: 0 Pages: 30-38

    • DOI

      10.2197/ipsjtbio.7.30

    • NAID

      130004952388

    • ISSN
      1882-6679
    • Related Report
      2014 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] A Fast Parameter Estimation Method for Inferring Reduced S-system Models of Genetic Networks2014

    • Author(s)
      Shuhei Kimura, Munehiro Furuta, Masanao Sato and Mariko Okada-Hatakeyama
    • Journal Title

      Proc. of 2014 International Conference on Information Systems and Computing Technology

      Volume: なし Pages: 45-50

    • Related Report
      2014 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Inference of Genetic Networks Using Random Forests: Use of Different Weights for Time-series and Static Gene Expression Data2018

    • Author(s)
      S.Kimura, M.Tokuhisa and M. Okada-Hatakeyama
    • Organizer
      The 18th IEEE International Conference on Bioinformatics and Bioengineering
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Simultaneous Execution Method of Gene Clustering and Network Inference2016

    • Author(s)
      S.Kimura, M.Tokuhisa and M. Okada-Hatakeyama
    • Organizer
      the 2016 Conference on Computational Intelligence in Bioinformatics and Computational Biology
    • Place of Presentation
      チェンマイ,タイ
    • Year and Date
      2016-10-05
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Improvement of Reliabilities of Regulations using a Hierarchical Structure in a Genetic Network2015

    • Author(s)
      S.Kimura, M.Okada-Hatakeyama
    • Organizer
      the 2015 International Joint Conference on Neural Networks
    • Place of Presentation
      キラーニー,アイルランド
    • Year and Date
      2015-07-12
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] 階層構造を利用した遺伝子ネットワーク同定2015

    • Author(s)
      木村周平
    • Organizer
      第1回 理化学研究所・産業技術総合研究所 共同シンポジウム
    • Place of Presentation
      台場,東京
    • Year and Date
      2015-06-29
    • Related Report
      2015 Research-status Report
  • [Presentation] 遺伝子ネットワークのreduced S-systemモデルの効率的同定法の提案2015

    • Author(s)
      木村周平, 佐藤昌直, 岡田眞里子
    • Organizer
      情報処理学会 第41回BIO研究発表会
    • Place of Presentation
      北海道大学
    • Year and Date
      2015-03-20
    • Related Report
      2014 Research-status Report
  • [Presentation] A Fast Parameter Estimation Method for Inferring Reduced S-system Models of Genetic Networks2014

    • Author(s)
      Shuhei Kimura, Munehiro Furuta, Masanao Sato and Mariko Okada-Hatakeyama
    • Organizer
      2014 International Conference on Information Systems and Computing Technology
    • Place of Presentation
      鳥取大学
    • Year and Date
      2014-10-04 – 2014-10-05
    • Related Report
      2014 Research-status Report
  • [Book] Evolutionary Computation in Regulatory Network Research2016

    • Author(s)
      S.Kimura
    • Total Pages
      424
    • Publisher
      Wiley
    • Related Report
      2016 Research-status Report

URL: 

Published: 2014-04-04   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi