• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Explicit reduction theory of algebraic groups

Research Project

Project/Area Number 26400012
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionOsaka University

Principal Investigator

Watanabe Takao  大阪大学, 理学研究科, 教授 (30201198)

Co-Investigator(Renkei-kenkyūsha) HAYATA Takahiro  山形大学, 理工学研究科, 准教授 (50312757)
Research Collaborator Lee Tim Weng  大阪大学, 大学院理学研究科
Project Period (FY) 2014-04-01 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2015: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2014: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords基本領域 / 数論的部分群 / 簡約代数群 / 簡約理論 / 代数群 / アデール / 2次形式 / 対称錘 / 算術的商空間
Outline of Final Research Achievements

In this research project, we construct fundamental domains of arithmetic quotients of isotropic reductive groups over number fields by using Ryshkov domains. A Ryskov domain is defined by an arithmetical minimum function, which depends on a choice of a maximal parabolic subgroup. If we take different maximal parabolic subgroups, then we have different fundamental domains. In the case of general linear groups, we give explicit descriptions of several fundamental domains. Our construction gives a generalization of Korkine-Zorotareff reduction.

Report

(4 results)
  • 2016 Annual Research Report   Final Research Report ( PDF )
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (4 results)

All 2017 2016 2014

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (3 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results)

  • [Journal Article] Ryshkov domains of reductive algebraic groups2014

    • Author(s)
      Takao Watanabe
    • Journal Title

      Pacific Journal of Mathematics

      Volume: 270 Issue: 1 Pages: 237-255

    • DOI

      10.2140/pjm.2014.270.237

    • Related Report
      2014 Research-status Report
    • Peer Reviewed
  • [Presentation] Fundamental domains of arithmetic quotients of the general linear group and Humbert forms2017

    • Author(s)
      Lee Tim Weng
    • Organizer
      保型形式とその周辺
    • Place of Presentation
      数理解析研究所
    • Year and Date
      2017-02-07
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Fundamental domains of arithmetic quotiens of reductive groups2016

    • Author(s)
      渡部隆夫
    • Organizer
      Lattices and Applications in Number Theory
    • Place of Presentation
      Mathematisches Forschungsinstitut Oberwolfach
    • Year and Date
      2016-01-17
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Fundamental domains of arithmetic quotients of reductive groups2014

    • Author(s)
      Takao Watanabe
    • Organizer
      Integral Quadratic Forms and Related Topics
    • Place of Presentation
      Hyundai Hotel, Gyeongju, Korea
    • Year and Date
      2014-08-07
    • Related Report
      2014 Research-status Report
    • Invited

URL: 

Published: 2014-04-04   Modified: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi