• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study on K groups of the ring of integers of number fields

Research Project

Project/Area Number 26400015
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionShimane University

Principal Investigator

Aoki Miho  島根大学, 総合理工学研究科, 准教授 (10381451)

Project Period (FY) 2014-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2015: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2014: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords代数的K群 / 岩澤加群 / イデアル類群 / 単数群 / Coates-Sinnott予想 / CM体 / Fittingイデアル / 高次Stickelberger 元 / 岩澤理論 / Coates-Sinnott予想
Outline of Final Research Achievements

The results for the CM extension over the total real number field obtained in the previous research on the odd prime part of annihilator ideas of the K groups of the ring of integers have been extended to the Fitting ideal under the technical assumption on the degree of the extension.
When the extension field is a CM field, the localization map of the cohomology group becomes complicated, compared to the case of the total real field,
but by decomposing the higher Stickelberger elements defined by the special values of the partial zeta function to the annihilators of the kernel and image of the localization map, we were able to obtain the results.

Report

(5 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (23 results)

All 2017 2016 2015 2014 Other

All Int'l Joint Research (1 results) Journal Article (7 results) (of which Peer Reviewed: 6 results,  Open Access: 1 results,  Acknowledgement Compliant: 1 results) Presentation (15 results) (of which Int'l Joint Research: 5 results,  Invited: 3 results)

  • [Int'l Joint Research] 武漢大学(中国)

    • Related Report
      2016 Research-status Report
  • [Journal Article] Mod p equivalence classes of linear recurrence sequences of degree 22017

    • Author(s)
      Miho Aoki, Yuho Sakai
    • Journal Title

      Rocky Mountain Journal of Mathematics

      Volume: 47 Issue: 8

    • DOI

      10.1216/rmj-2017-47-8-2513

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] An infinite family of pairs of imaginary quadratic fields with both class numbers divisible by five2017

    • Author(s)
      Miho Aoki, Yasuhiro Kishi
    • Journal Title

      Journal of Number Theory

      Volume: 176 Pages: 333-343

    • DOI

      10.1016/j.jnt.2016.12.007

    • NAID

      120006706219

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Mod p Equivalence Classes of Linear Recurrence Sequences of Degree Two2017

    • Author(s)
      Miho Aoki, Yuho Sakai
    • Journal Title

      Rocky Mountain Journal

      Volume: 印刷中

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Journal Article] 一般 Lucas sequence の可除性と Laxton 群2016

    • Author(s)
      青木 美穂
    • Journal Title

      第9回数論女性の集まり報告集

      Volume: 9

    • Related Report
      2016 Research-status Report
  • [Journal Article] On Equivalence Classes of Generalized Fibonacci sequences2016

    • Author(s)
      青木美穂, 酒井悠帆
    • Journal Title

      Journal of Integer Sequences

      Volume: 19

    • Related Report
      2015 Research-status Report
    • Peer Reviewed
  • [Journal Article] On divisibility of generalized Fibonacci numbers2015

    • Author(s)
      青木美穂, 酒井悠帆
    • Journal Title

      Integers

      Volume: 15

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] On systems of fundamental units of certain quartic fields2015

    • Author(s)
      M. Aoki and Y. Kishi
    • Journal Title

      Int. J. Number Theory

      Volume: 11 Issue: 07 Pages: 2019-2035

    • DOI

      10.1142/s1793042115500864

    • Related Report
      2015 Research-status Report
    • Peer Reviewed
  • [Presentation] Laxton群の構造と2次体の整数論について2017

    • Author(s)
      青木美穂
    • Organizer
      半田山・幾何・代数セミナー
    • Place of Presentation
      岡山理科大学
    • Year and Date
      2017-02-22
    • Related Report
      2016 Research-status Report
  • [Presentation] アーベル数体の組の類数の可除性について2017

    • Author(s)
      青木美穂
    • Organizer
      神楽坂代数セミナー
    • Place of Presentation
      東京理科大学大学院理学研究科
    • Year and Date
      2017-01-12
    • Related Report
      2016 Research-status Report
  • [Presentation] A family of pairs of imaginary cyclic fields with both class numbers divisible by p2017

    • Author(s)
      Miho Aoki
    • Organizer
      School of Mathematics and Statistics 談話会, 武漢大学 (中国)
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] An infinite family of pairs of abelian number fields with both class numbers divisible by p2016

    • Author(s)
      Miho Aoki, Yasuhiro Kishi
    • Organizer
      KICM 2016, International Conference on Mathematics, Number Theory, Graph Theory and
    • Place of Presentation
      King Mongkut's Institute of Technology Ladkrabang, バンコク(タイ)
    • Year and Date
      2016-12-22
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] 一般Lucas sequencesの素数における可除性とLaxton群について2016

    • Author(s)
      青木美穂, 酒井悠帆
    • Organizer
      日本フィボナッチ協会第14回研究集会
    • Place of Presentation
      東京理科大学
    • Year and Date
      2016-08-26
    • Related Report
      2016 Research-status Report
  • [Presentation] Mod p equivalence classes of linear recurrences of degree two2016

    • Author(s)
      Miho Aoki, Yuho Sakai
    • Organizer
      17th International Conference on Fibonacci Numbers and Their Applications
    • Place of Presentation
      University of Caen, カン(フランス)
    • Year and Date
      2016-06-28
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] 虚二次体の組の類数の可除性について2016

    • Author(s)
      青木美穂
    • Organizer
      新潟代数セミナー
    • Place of Presentation
      新潟大学大学院自然科学研究科
    • Year and Date
      2016-06-21
    • Related Report
      2016 Research-status Report
  • [Presentation] 一般Lucas sequence の可除性とLaxton群2016

    • Author(s)
      青木美穂
    • Organizer
      第9回数論女性の集まり
    • Place of Presentation
      上智大学
    • Year and Date
      2016-05-21
    • Related Report
      2016 Research-status Report
  • [Presentation] On equivalence classes of generalized Fibonacci sequences associated to units of real quadratic fields2016

    • Author(s)
      青木美穂
    • Organizer
      International Conference on Diophantine Analysis and Related Topics
    • Place of Presentation
      Wuhan University(中国)
    • Year and Date
      2016-03-11
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 類数が5で割れる虚2次体のペアの無限族について2016

    • Author(s)
      岸康弘, 青木美穂
    • Organizer
      日本数学会 中国・四国支部例会
    • Place of Presentation
      広島大学
    • Year and Date
      2016-01-24
    • Related Report
      2015 Research-status Report
  • [Presentation] 代数体の整数環のK群のannihilatorについて2015

    • Author(s)
      青木美穂
    • Organizer
      2015大分整数論研究集会
    • Place of Presentation
      ホルトホール大分
    • Year and Date
      2015-09-02
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] 一般フィボナッチ数列の素数における可除性に関する諸結果2015

    • Author(s)
      酒井悠帆, 青木美穂
    • Organizer
      日本フィボナッチ協会第13回研究集会
    • Place of Presentation
      東京理科大学
    • Year and Date
      2015-08-21
    • Related Report
      2015 Research-status Report
  • [Presentation] Systems of fundamental units of quartic fields and imaginary quadratic fields with class number2015

    • Author(s)
      青木美穂, 岸康弘
    • Organizer
      29th Journees Arithmetiques
    • Place of Presentation
      University of Debrecen (ハンガリー)
    • Year and Date
      2015-07-09
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] ある4次多項式と基本単数系2015

    • Author(s)
      青木美穂, 岸康弘
    • Organizer
      日本数学会 中国・四国支部例会
    • Place of Presentation
      徳島大学
    • Year and Date
      2015-01-25
    • Related Report
      2014 Research-status Report
  • [Presentation] ある4次多項式と基本単数系2014

    • Author(s)
      青木美穂, 岸康弘
    • Organizer
      第9回福岡数論研究集会
    • Place of Presentation
      立命館アジア太平洋大学
    • Year and Date
      2014-09-04
    • Related Report
      2014 Research-status Report

URL: 

Published: 2014-04-04   Modified: 2022-02-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi