Research on code vertex operator algebras using parafermion algebras
Project/Area Number |
26400040
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Hitotsubashi University |
Principal Investigator |
|
Research Collaborator |
ARAKAWA Tomoyuki 京都大学, 数理解析研究所, 准教授 (40377974)
YAMAUCHI Hiroshi 東京女子大学, 現代教養学部, 准教授 (40452213)
Lam Ching Hung Academia Sinica, 教授
|
Project Period (FY) |
2014-04-01 – 2017-03-31
|
Project Status |
Completed (Fiscal Year 2016)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2015: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2014: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 頂点作用素代数 / パラフェルミオン代数 / アフィンリー代数 / W代数 / 格子 / コード / 国際研究者交流 / 中国:台湾 |
Outline of Final Research Achievements |
A rank 1, type A, level k parafermion vertex operator algebra is defined as the commutant of the Heisenberg algebra in the integrable representation of a rank 1, type A affine Lie algebra at level k, which is a C2-cofinite and rational vertex operator algebra. The parafermion vertex operator algebra has k simple currents and there is a Zk-symmetry in the fusion rules among them. Using a Zk-code and those simple currents, a new series of C2-cofinite and rational vertex operator algebras is constructed.
|
Report
(4 results)
Research Products
(24 results)