• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Representations of group rings and Auslander-Reiten quivers

Research Project

Project/Area Number 26400051
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionNagoya City University (2016-2017)
Osaka City University (2014-2015)

Principal Investigator

KAWATA Shigeto  名古屋市立大学, 大学院システム自然科学研究科, 教授 (50195103)

Co-Investigator(Renkei-kenkyūsha) KANEDA Masaharu  大阪市立大学, 大学院理学研究科, 教授 (60204575)
FURUSAWA Masaaki  大阪市立大学, 大学院理学研究科, 教授 (50294525)
BABA Yoshitomo  大阪教育大学, 教育学部, 教授 (10201724)
Project Period (FY) 2014-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2015: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2014: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords有限群 / 表現 / Auslander-Reiten有向グラフ / 有限群の表現 / Auslander-Reiten quiver
Outline of Final Research Achievements

Let G be a finite group and R a complete discrete valuation ring with residue class field k of positive characteristic. Suppose that a block B of the group ring RG is of infinite representation type. Let L be an indecomposable B-lattice, and let C be the stable component of the Auslander-Reiten quiver of B containing L. Assume that the reduced kG-module M of L is indecomposable. Then, we have proved that the tree class of C is A-infinity if L is of height 0. Also, we have shown that if L and M have the same vertex Q, then the vertex of C is Q.

Report

(5 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (7 results)

All 2017 2016 2015 2014

All Journal Article (2 results) (of which Open Access: 1 results,  Peer Reviewed: 1 results) Presentation (5 results)

  • [Journal Article] 群環の表現加群のヴァーテックスとAuslander-Reiten連結成分について2017

    • Author(s)
      河田成人
    • Journal Title

      数理解析研究所講究録

      Volume: 2053 Pages: 111-118

    • Related Report
      2017 Annual Research Report
    • Open Access
  • [Journal Article] On Auslander-Reiten components and height zero lattices for integral group rings2014

    • Author(s)
      Shigeto Kawata
    • Journal Title

      Argebras and Repreentation Theory

      Volume: 17 Issue: 5 Pages: 1603-1613

    • DOI

      10.1007/s10468-013-9462-7

    • Related Report
      2014 Research-status Report
    • Peer Reviewed
  • [Presentation] 群環上の直既約加群のヴァーテックスについて2017

    • Author(s)
      河田成人
    • Organizer
      2017 年度日本数学会秋季総合分科会
    • Related Report
      2017 Annual Research Report
  • [Presentation] 群整環上の表現加群のヴァーテックスについて2017

    • Author(s)
      河田成人
    • Organizer
      京都大学数理解析研究所研究集会「有限群のコホモロジー論とその周辺」
    • Place of Presentation
      京都大学数理解析研究所(京都市左京区北白川追分町)
    • Related Report
      2016 Research-status Report
  • [Presentation] 群環のAuslander-Reiten連結成分とヴァーテックス2016

    • Author(s)
      河田成人
    • Organizer
      2016年度日本数学会秋季総合分科会
    • Place of Presentation
      関西大学千里山キャンパス(大阪府吹田市山手町)
    • Related Report
      2016 Research-status Report
  • [Presentation] 群環の表現加群のヴァーテックスとAuslander-Reiten連結成分について2016

    • Author(s)
      河田成人
    • Organizer
      京都大学数理解析研究所研究集会「有限群・代数的組合せ論・頂点作用素代数の研究」
    • Place of Presentation
      京都大学数理解析研究所(京都市左京区北白川追分町)
    • Related Report
      2016 Research-status Report
  • [Presentation] 有限群のブロックにおける高さ 0 の表現加群と Auslander-Reiten 連結成分について2015

    • Author(s)
      河田成人
    • Organizer
      2015年度日本数学会秋季総合分科会
    • Place of Presentation
      京都産業大学(京都府京都市北区上賀茂本山)
    • Year and Date
      2015-09-15
    • Related Report
      2015 Research-status Report

URL: 

Published: 2014-04-04   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi