• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Induced torsion structures on triangulated categories

Research Project

Project/Area Number 26400052
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionOsaka Prefecture University

Principal Investigator

Kato Kiriko  大阪府立大学, 理学(系)研究科(研究院), 准教授 (00347478)

Research Collaborator Jorgensen P.  Newcastle大学, 数学統計科, 教授
Christensen L. W.  Texas工科大学, 数学統計科, 教授
NAKAOKA Hiroyuki  鹿児島大学, 理学部, 准教授
IIMA Kei-ichiro  国立奈良高専, 一般科, 准教授
ENOMOTO Haruhisa  
NAKAMURA Tsutomu  
MATSUI Hiroki  
OGAWA Yasuaki  
KUBO Yuki  
HIRAYAMA Yukio  
Project Period (FY) 2014-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2014: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords環論 / ホモロジー代数 / 圏論
Outline of Final Research Achievements

If a triangulated category has a torsion pair, then it is a category of extensions of subcategories. Decomposition into subcategories makes analysis simpler. Sometimes existence of torsion pairs may characterize categories. Our results consist mainly of two points: (1) We studied generalized torsion pairs with milder condition on orthogonality. We showed that they correspond with torsion pairs of quotient categories. (2) We are interested in categories of N-complexes since it has N-gons of recollements which is multiplied and recursive recollements. As a consequence, we showed that a derived category of N-complexes over a ring is triangle equivalent to that of ordinary (2-)complexes of upper triangular matrix rings over the ring.

Report

(5 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (10 results)

All 2018 2017 2016 2015 2014 Other

All Int'l Joint Research (1 results) Journal Article (4 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 3 results,  Acknowledgement Compliant: 2 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 3 results) Remarks (1 results) Funded Workshop (1 results)

  • [Int'l Joint Research] Newcastle University(United Kingdom)

    • Related Report
      2015 Research-status Report
  • [Journal Article] Totally acyclic complexes and locally Gorenstein rings,2018

    • Author(s)
      L. W. Christensen and K. Kato,
    • Journal Title

      J. Algebra and Its Applications

      Volume: 17 Issue: 03 Pages: 1850039-1850039

    • DOI

      10.1142/s0219498818500391

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Derived categories of N-complexes2017

    • Author(s)
      Osamu Iyama, Kiriko Kato and Jun-ichi Miyachi
    • Journal Title

      Journal of the London Mathematical Society

      Volume: 96 Issue: 3 Pages: 687-716

    • DOI

      10.1112/jlms.12084

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Totally acyclic complexes and locally Gorenstein rings,2017

    • Author(s)
      L. W. Christensen and K. Kato
    • Journal Title

      J. Algebra and Its Applications

      Volume: 印刷中

    • Related Report
      2016 Research-status Report
    • Acknowledgement Compliant
  • [Journal Article] Triangulated subcategories of extensions, stable t-structures, and triangles of recollements2015

    • Author(s)
      Peter Jorgensen and Kiriko Kato
    • Journal Title

      Journal of Pure and Applied Algebra

      Volume: 219 Issue: 12 Pages: 5500-5510

    • DOI

      10.1016/j.jpaa.2015.05.029

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] Polygons of recollements2016

    • Author(s)
      Kiriko Kato
    • Organizer
      Triangulated Categories in Algebra, Geometry and Topology
    • Place of Presentation
      University of Stuttgart, Stuttgart, Germany
    • Year and Date
      2016-03-14
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 多角形ルコルマンー三角圏の対称性ー2016

    • Author(s)
      加藤 希理子
    • Organizer
      第61回代数学シンポジウム
    • Place of Presentation
      佐賀大学
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] 導来双対とホモトピー圏2014

    • Author(s)
      加藤 希理子
    • Organizer
      導来双対ワークショップ
    • Place of Presentation
      東京学芸大学
    • Year and Date
      2014-12-22 – 2014-12-23
    • Related Report
      2014 Research-status Report
    • Invited
  • [Remarks] 研究

    • URL

      http://www.mi.s.osakafu-u.ac.jp/~kiriko/research/research.html

    • Related Report
      2015 Research-status Report
  • [Funded Workshop] MIni-Workshop on Homological Algebra2016

    • Place of Presentation
      大阪府立大学
    • Year and Date
      2016-06-08
    • Related Report
      2016 Research-status Report

URL: 

Published: 2014-04-04   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi