• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

ADHM-construction of vector bundles and harmonic maps

Research Project

Project/Area Number 26400074
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionMeiji University

Principal Investigator

NAGATOMO yasuyuki  明治大学, 理工学部, 教授 (10266075)

Co-Investigator(Renkei-kenkyūsha) TAKAHASHI masaro  久留米工業高等専門学校, 一般科目理科系, 准教授 (70311107)
Research Collaborator KOGA Isami  九州大学, 大学院・数理学府, 博士研究員 (60782232)
Oscar Macia  University of Valenncia, Faculty of Mathematical Science, Profesor ayudante doctor
Project Period (FY) 2014-04-01 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2016: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2015: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2014: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordsベクトル束 / ゲージ理論 / 調和写像 / 正則写像 / モジュライ空間 / 表現論
Outline of Final Research Achievements

A generalisation of do Carmo-Wallach theory on harmonic maps into Grassmannians is more extended in the case that the domain of maps are compact Riemannian manifolds. This theory enables us to construct moduli spaces of harmonic maps in a similar way to the ADHM-construction of instantons on the 4-sphere.
This theory has a lot of applications. As one of them, we can construct moduli spaces of holomorphic isometric embeddings of the complex projective line into a complex quadric hypersurface of the projective space. Due to this, it turned out that the moduli space has a structure of foliation whose leaves are Kaehler quotients of flat spaces.
As another example, we can classify equivariant holomorphic maps of complex projective line into complex Grassmannian of 2-planes. In this case, our problem reduces to classify invariant connections on vector bundles of rank 2. In each case, our theory provides the compactification of the moduli space with a natural geomertic interpretation.

Report

(4 results)
  • 2016 Annual Research Report   Final Research Report ( PDF )
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (9 results)

All 2017 2015 2014 Other

All Int'l Joint Research (1 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Acknowledgement Compliant: 1 results) Presentation (6 results) (of which Int'l Joint Research: 1 results,  Invited: 4 results)

  • [Int'l Joint Research] Faculty of Mathematical Science/University of Valencia(Spain)

    • Related Report
      2016 Annual Research Report
  • [Journal Article] Holomorphic Isometric Embeddings of the Projective line into Quadrics2017

    • Author(s)
      O.Macia, Y.Nagatomo, M.Takahashi
    • Journal Title

      Tohoku Mathematical Journal

      Volume: 印刷中

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Special geometries associated to quaternion-Kaehler 8-manifolds2015

    • Author(s)
      A.Gambioli, Y.Nagatomo, S.Salamon
    • Journal Title

      Journal of Geometry and Physics

      Volume: 91 Pages: 146-162

    • Related Report
      2015 Research-status Report
    • Peer Reviewed
  • [Presentation] Harmonic maps of the complex projective line to complex hyperquadrics2017

    • Author(s)
      Yasuyuki Nagatomo
    • Organizer
      13th OCAMI-RIRCM Joint DG workshop on Submanifold Geometry and Lie Theory
    • Place of Presentation
      大阪市立大学
    • Year and Date
      2017-03-27
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 複素射影直線から階数2の複素グラスマン多様体への同変正則埋め込みの分類2017

    • Author(s)
      古賀勇、長友康行
    • Organizer
      日本数学会
    • Place of Presentation
      首都大学東京
    • Year and Date
      2017-03-24
    • Related Report
      2016 Annual Research Report
  • [Presentation] 複素射影直線から複素二次超曲面への調和写像2015

    • Author(s)
      長友康行
    • Organizer
      多様体上の微分方程式
    • Place of Presentation
      金沢大学サテライトプラザ
    • Year and Date
      2015-11-12
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] 複素射影直線から複素2次超曲面への正則等長埋め込み2015

    • Author(s)
      高橋正郎、Oscar Macia、長友康行
    • Organizer
      日本数学会 幾何学分科会 一般講演
    • Place of Presentation
      明治大学
    • Year and Date
      2015-03-21 – 2015-03-24
    • Related Report
      2014 Research-status Report
  • [Presentation] 複素射影直線から複素2次超曲面への正則等長埋め込み2014

    • Author(s)
      長友康行
    • Organizer
      部分多様体幾何とリー群作用2014
    • Place of Presentation
      東京理科大学森戸記念館
    • Year and Date
      2014-09-05 – 2014-09-06
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] Harmonic maps into Grassmannians2014

    • Author(s)
      Yasuyuki NAGATOMO
    • Organizer
      ICM 2014 Satellite Conference on Real and Complex Submanifolds
    • Place of Presentation
      National Institute for Mathematical Sciences
    • Year and Date
      2014-08-10 – 2014-08-12
    • Related Report
      2014 Research-status Report
    • Invited

URL: 

Published: 2014-04-04   Modified: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi