• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

An (N-2)-dimensional surface with positive principal curvatures gives an N-dimensional traveling front in bistable reaction-diffusion equations

Research Project

Project/Area Number 26400169
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionOkayama University

Principal Investigator

Masaharu Taniguchi  岡山大学, 異分野基礎科学研究所, 教授 (30260623)

Project Period (FY) 2014-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2014: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords進行波 / Allen--Cahn方程式 / 多次元 / 非対称 / 反応拡散方程式 / 多次元進行波 / Allen-Cahn方程式 / 国際研究者交流(Canada)
Outline of Final Research Achievements

In this project, I consider a parabolic equation with a bistable nonlinear term. This equation is called the Allen--Cahn equation or the Nagumo equation.The aim of this project is to search unknown traveling fronts. The result is as follows. For every given compact convex set in the (N-1)-Euclidean space, I proved the existence
of an N-dimensional traveling front solution associated with this set. Moreover, I proved that this traveling front solution is asymtotically stable if the given perturbation decays at infinity. These results were published by SIAM J. Math. Anal. 2015 and by J. Differential Equations 2016.

Academic Significance and Societal Importance of the Research Achievements

Allen--Cahn方程式(Nagumo方程式)は二層問題を記述するもっとも基本的な数理物理モデルである。形を保ったままで一定速度で伝播する波は進行波とよばれ,近年,多次元進行波の研究が求められている。この方程式の拡散項と反応項のいずれにも異方性すなわち方向依存性は入っておらず,空間的に等方的なモデルである。本研究では進行軸に対して軸非対称な多次元進行波の存在が始めて証明された。またこの軸非対称進行波が与えられた擾乱が無限遠方で減衰するとき,安定に伝播することが解明された。この事実は数理物理モデルにおける二層問題において情報がどのように伝達されるかを解明する手がかりになると期待される。

Report

(6 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (22 results)

All 2020 2018 2017 2016 2015 2014

All Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Acknowledgement Compliant: 1 results,  Open Access: 1 results) Presentation (15 results) (of which Int'l Joint Research: 5 results,  Invited: 12 results) Funded Workshop (4 results)

  • [Journal Article] Existence and stability of stationary solutions to the Allen--Cahn equation discretized in space and time2020

    • Author(s)
      Amy Poh Ai Ling and Masaharu Taniguchi
    • Journal Title

      Mathematical Journal of Okayama University

      Volume: 未定

    • NAID

      120006778831

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Convex compact sets in $\mathbb{R}^{\scriptscriptstyle N-1}$ give traveling fronts of cooperation-diffusion systems in $\mathbb{R}^{\scriptscriptstyle N}$2016

    • Author(s)
      Masaharu Taniguchi
    • Journal Title

      Journal of Differential Equations

      Volume: 260 Issue: 5 Pages: 4301-4338

    • DOI

      10.1016/j.jde.2015.11.010

    • Related Report
      2016 Research-status Report 2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] An (N-1)-dimensional convex compact set gives an N-dimensional traveling front in the Allen-Cahn equation2015

    • Author(s)
      Masaharu Taniguchi
    • Journal Title

      SIAM Journal on Mathematical Analysis

      Volume: 47 Issue: 1 Pages: 455-476

    • DOI

      10.1137/130945041

    • NAID

      120005657667

    • Related Report
      2015 Research-status Report 2014 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Multidimensional traveling fronts in reaction-diffusion equations2018

    • Author(s)
      Masaharu Taniguchi
    • Organizer
      AIMS Conference on Dynamical Systems, Differential Equations and Applications, Taiwan
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Multidimensional traveling fronts in reaction-diffusion equations2018

    • Author(s)
      谷口雅治
    • Organizer
      The 11th MSJ-SI The Role of Metrics in the Theory of Partial Differential Equations
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Axially asymmetric traveling fronts in balanced bistable reaction-diffusion equations2018

    • Author(s)
      Masaharu Taniguchi
    • Organizer
      Recent Trends on Nonlinear PDEs of Elliptic and Parabolic Type, MATRIX Research Centre, Australia
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Axially non-symmetric traveling fronts in balanced bistable reaction-diffusion equations2018

    • Author(s)
      谷口雅治
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Allen--Cahn方程式における角錐型進行波の一意性と安定性2017

    • Author(s)
      谷口雅治
    • Organizer
      日本数学会秋季総合分科会 函数方程式分科会
    • Related Report
      2017 Research-status Report
  • [Presentation] An (N-1)-dimensional convex compact set gives an N-dimensional traveling front2017

    • Author(s)
      Masaharu Taniguchi
    • Organizer
      Equadiff2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] An (N-1)-dimensional convex compact set gives an N-dimensional traveling front2017

    • Author(s)
      谷口雅治
    • Organizer
      研究集会「非線形偏微分方程式の定性的理論」
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] An (N-1)-dimensional convex compact set gives an N-dimensional traveling front2016

    • Author(s)
      Masaharu Taniguchi
    • Organizer
      International Conference for the 70th Anniversary of Korean Mathematical Society
    • Place of Presentation
      Seoul National University
    • Year and Date
      2016-10-20
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] An (N-1)-dimensional convex compact set gives an N-dimensional traveling front2016

    • Author(s)
      Masaharu Taniguchi
    • Organizer
      11th AIMS International Conference on Dynamical Systems, Differential Equations and Applications
    • Place of Presentation
      Orlando, USA
    • Year and Date
      2016-07-01
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Multidimensional traveling fronts in reaction-diffusion equations2015

    • Author(s)
      Masaharu Taniguchi
    • Organizer
      The Tenth East China Partial Differential Equations Conference
    • Place of Presentation
      East China Normal University, 中華人民共和国
    • Year and Date
      2015-06-15
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] (N-1)次元空間における狭義凸なコンパクト図形はN次元空間における競合拡散方程式系の進行波解を与える2015

    • Author(s)
      谷口雅治
    • Organizer
      拡散に付随する数理科学セミナー
    • Place of Presentation
      九州大学
    • Year and Date
      2015-05-30
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] Convex compact sets in $\mathbb{R}^{N-1}$ give traveling fronts of cooperation-diffusion systems in $\mathbb{R}^{N}$2015

    • Author(s)
      谷口雅治
    • Organizer
      東工大数理解析研究会
    • Place of Presentation
      東京工業大学
    • Year and Date
      2015-02-09
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] An (N-1)-dimensional convex compact set gives an N-dimensional traveling front in the Allen-Cahn equation2015

    • Author(s)
      谷口雅治
    • Organizer
      FMSPミニワークショップ "Recent Trends in Traveling Waves"
    • Place of Presentation
      東京大学大学院数理科学研究科
    • Year and Date
      2015-01-30
    • Related Report
      2014 Research-status Report
    • Invited
  • [Presentation] Convex compact sets in $\mathbb{R}^{N-1}$ give traveling fronts of cooperation-diffusion systems in $\mathbb{R}^{N}$2014

    • Author(s)
      谷口雅治
    • Organizer
      日本数学会秋季総合分科会函数方程式分科会
    • Place of Presentation
      広島大学
    • Year and Date
      2014-09-25 – 2014-09-28
    • Related Report
      2014 Research-status Report
  • [Presentation] Convex compact sets in $\mathbb{R}^{N-1}$ give traveling fronts in $\mathbb{R}^{N}$ in cooperative diffusion systems2014

    • Author(s)
      Masaharu Taniguchi
    • Organizer
      BIRS Workshop 14w5017
    • Place of Presentation
      Banff International Research Station, Canada
    • Year and Date
      2014-05-25 – 2014-05-30
    • Related Report
      2014 Research-status Report
    • Invited
  • [Funded Workshop] Okayama Workshop on Partial Differential Equations2018

    • Related Report
      2018 Annual Research Report
  • [Funded Workshop] パターン形成の数理とその周辺2018

    • Related Report
      2018 Annual Research Report
  • [Funded Workshop] 研究集会「非線形偏微分方程式の非線形偏微分方程式の定性的理論」2017

    • Related Report
      2017 Research-status Report
  • [Funded Workshop] Okayama Workshop on Partial Differential Equations2017

    • Related Report
      2017 Research-status Report

URL: 

Published: 2014-04-04   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi