Project/Area Number |
26400187
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Foundations of mathematics/Applied mathematics
|
Research Institution | Kumamoto University |
Principal Investigator |
Keisuke Shiromoto 熊本大学, 大学院先端科学研究部(工), 教授 (00343666)
|
Co-Investigator(Kenkyū-buntansha) |
千葉 周也 熊本大学, 大学院先端科学研究部(工), 講師 (80579764)
|
Co-Investigator(Renkei-kenkyūsha) |
USUDA Tsuyoshi 愛知県立大学, 情報科学部, 教授 (80273308)
CHIGIRA Naoki 熊本大学, 大学院先端科学研究部, 准教授 (40292073)
|
Research Collaborator |
Thomas Britz University of New South Wales, School of Mathematics, Senior Lecturer
|
Project Period (FY) |
2014-04-01 – 2018-03-31
|
Project Status |
Completed (Fiscal Year 2017)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2014: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | マトロイド / 量子情報 / 線形符号 / 符号理論 / 量子情報理論 / 組合せ論 |
Outline of Final Research Achievements |
In algebraic coding theory, I have studied mainly the existence problem and the construction problem of codes. Based on these problems, I tried to consider a kind of the similar problems in matroid theory and quantum information theory in this research period. The main results contain a classification theorem and an upper bound on critical exponents of any representative matroids over finite fields and a classification result on the critical exponent of a Dowling matroid over a finite field.
|