Project/Area Number |
26461227
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Kidney internal medicine
|
Research Institution | Osaka University |
Principal Investigator |
Matsui Isao 大阪大学, 医学系研究科, 助教 (60456986)
|
Co-Investigator(Kenkyū-buntansha) |
猪阪 善隆 大阪大学, 医学系研究科, 教授 (00379166)
濱野 高行 大阪大学, 医学系研究科, 寄附講座准教授 (50403077)
|
Project Period (FY) |
2014-04-01 – 2017-03-31
|
Project Status |
Completed (Fiscal Year 2016)
|
Budget Amount *help |
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2014: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 25(OH)D / 腎尿細管間質線維化 / ビタミンD / 1,25(OH)2D / マクロファージ / ビタミンD / 25ヒドロキシビタミンD / 25ヒドロキシビタミンD |
Outline of Final Research Achievements |
Effects of 25(OH)D3 on unilateral ureteral obstruction were analyzed. Excess 25(OH)D3 in obstructed mice worsened oxidative stress and tubulointerstitial fibrosis, whereas moderate levels of 25(OH)D3 had no effects. The exacerbating effects of excess 25(OH)D3 were abolished in CYP27B1/VDR double-knockout mice and in macrophage-depleted CYP27B1 knockout mice. Excess 25(OH)D3 upregulated both M1 marker (TNF-α) and M2 marker (TGF-β1) levels of kidney-infiltrating macrophages. In vitro analyses verified that excess 25(OH)D3 directly upregulated TNF-α and TGF-β1 in cultured macrophages but not in tubular cells. TNF-α and 25(OH)D3 cooperatively induced oxidative stress by upregulating iNOS in tubular cells. Aggravated tubulointerstitial fibrosis in mice with excess 25(OH)D3 indicated that macrophage-derived TGF-β1 also had a key role in the pathogenesis of surplus 25(OH)D3. Thus, excess 25(OH)D3 worsens tubulointerstitial injury by modulating macrophage phenotype.
|