Amari neural field for mice brain activity
Project/Area Number |
26520201
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 特設分野 |
Research Field |
Mathematical Sciences in Search of New Cooperation
|
Research Institution | Hokkaido University |
Principal Investigator |
Sato Yuzuru 北海道大学, 電子科学研究所, 准教授 (30342794)
|
Research Collaborator |
Shimaoka Daisuke
Fujimoto Koichi
Taga Gentaro
|
Project Period (FY) |
2014-07-18 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 甘利神経場 / マウス全半球膜電位計測 / 進行スポット解 / 非局所結合ネットワーク / 非自励力学系 / 甘利神経場ダイナミクス / 甘利神経場モデル / 孤立進行波 |
Outline of Final Research Achievements |
Dynamics of membrane potential in mise whole brain is studied by using Amari neural field model with non-local coupling. As neuroscience, the phenomenology of the membrane potential propagation wave seen in spontaneous activity is studied. As mathematical science, the standard model of neural fields and the space-time continuous computation theory are studied. The results are the followings: (1)We identified the structure of the networks of neural fields based on the Allen Brain Atlas database. (2)The phenomenology of the membrane potential wave seen in spontaneous activity is constructed. (3) Robustness of the propagation wave and constructivity of the pulsar of the solitary wave are shown. (4) Since the non-local coupling is mathematically equivalent to the spatial curvature of the neural fields, it is found that the spatial geometry of neural fields influences the stability and division process of the solitary waves.
|
Academic Significance and Societal Importance of the Research Achievements |
非局所的な結合を持つ興奮-抑制系である甘利神経場モデルを用いてマウス全半球の膜電位ダイナミクスを解析しました。具体的には、脳科学の問題として自発活動時の膜電位伝播波の現象論を、数理科学の問題として神経場の標準モデルと時空連続な計算論を研究しました。結果として、神経網データベースに基づく甘利神経場モデルの構造を同定し、マウス全半球自発活動の現象論を構築しました。また神経場モデルにおいて現れる様々な時空ダイナミクスが普遍的であること、そのダイナミクスの安定性は神経場のネットワーク構造や幾何構造に支配されていることがわかりました。
|
Report
(6 results)
Research Products
(18 results)
-
-
-
-
-
-
-
[Journal Article] Neural field dynamics for growing brains2016
Author(s)
Yuzuru Sato, Daisuke Shimaoka, Koichi Fujimoto, and Gentaro Taga
-
Journal Title
Nonlinear Theory and Its Applications, IEICE
Volume: 7
Issue: 2
Pages: 226-233
DOI
NAID
ISSN
2185-4106
Related Report
Peer Reviewed / Open Access / Acknowledgement Compliant
-
-
-
-
-
-
-
-
-
-
-