Project/Area Number |
26560255
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Medical systems
|
Research Institution | Nagoya University |
Principal Investigator |
Mori Kensaku 名古屋大学, 情報連携統括本部, 教授 (10293664)
|
Co-Investigator(Kenkyū-buntansha) |
小田 昌宏 名古屋大学, 情報科学研究科, 助教 (30554810)
三澤 一成 愛知県がんセンター(研究所), 分子腫瘍学部, 研究員 (70538438)
|
Research Collaborator |
Daniel Ruckert インペリアルカレッジロンドン
|
Project Period (FY) |
2014-04-01 – 2017-03-31
|
Project Status |
Completed (Fiscal Year 2016)
|
Budget Amount *help |
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2016: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2015: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2014: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 医用画像処理 / セグメンテーション / 機械学習 / 解剖構造認識 / メタ解剖 / コンピュータ支援画像診断 / コンピュータ外科 |
Outline of Final Research Achievements |
This project aims to create new academic field called Meta anatomical information-oriented medical image processing under the prediction on big change of medical imaging devices. The research project achieved research outcomes in the topics including: (a) definition of target organs in meta-anatomy and its database format, (b) meta-anatomical structure recognition based on conditional random field, (c) meta-anatomical structure extraction from deep learning, (4) automated estimation of bounding boxes of target organ areas, (5) atlas-based anatomical structure recognition using meta-anatomical information database, (6) automated anatomical label assignments to blood vessels based on conditional random field, and (7) evaluation from clinical viewpoints.
|