Support vector machine with window-size self-adjusting for high-accuracy predicting of micrometeorological data
Project/Area Number |
26660198
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Agricultural environmental engineering/Agricultural information engineering
|
Research Institution | Shizuoka University |
Principal Investigator |
|
Project Period (FY) |
2014-04-01 – 2016-03-31
|
Project Status |
Completed (Fiscal Year 2015)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2015: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2014: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 農業気象・微気象 / 時系列データ予測 / 機械学習 |
Outline of Final Research Achievements |
Micrometeorological data, such as temperature, humidity, and wind speed, has a complicated correlation among different features, and its characteristics change variously with time. In this paper, we propose a new methodology for predicting micrometeorological data, sliding window-based support vector regression (SW-SVR) that involves a novel combination of SVR and ensemble learning. To represent complicated micrometeorological data easily, SW-SVR builds several SVRs specialized for each representative data group in various natural environments, such as different seasons and climates, and changes weights to aggregate the SVRs dynamically depending on the characteristics of test data. We implemented nitrogen absorption amount prediction control system as the prototype system and evaluated the prediction performance. The results demonstrated that SW-SVR reduced remarkably the prediction error of nitrogen absorbed amount compared with conventional machine learning and online learning.
|
Report
(3 results)
Research Products
(14 results)
-
-
-
-
[Presentation] Greenhouse environmental control system based on SW-SVR2015
Author(s)
Yukimasa Kaneda, Hirofumi Ibayashi, Naoki Oishi, Hiroshi Mineno
Organizer
The 19th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems(KES2015)
Place of Presentation
Marina Bay Sands Hotel,Singapore
Year and Date
2015-09-08
Related Report
Int'l Joint Research
-
-
-
-
-
-
-
-
-
-