• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Architectures and optimization algorithms for machine learning from big data

Research Project

Project/Area Number 26730114
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Intelligent informatics
Research InstitutionThe University of Tokyo

Principal Investigator

Matsushima Shin  東京大学, 大学院情報理工学系研究科, 常勤講師 (90721837)

Project Period (FY) 2014-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2014: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords機械学習 / 凸最適化 / スパース学習 / 大規模学習 / SVM / データマイニング / ビッグデータ / 国際情報交換
Outline of Final Research Achievements

In this research, firstly, we proposed an optimization scheme for regularized empirical risk minimization that includes SVM and logistic regression. we have shown that this scheme that performs optimization by operating multiple processes asynchronously allows efficient distributed optimization from both theoretical aspects nd experimental aspect.
Secondly, focusing on sparse learning that originally requires several tera-bytes of data, we proposed an optimization scheme that works efficiently by suppressing the amount of data. We have shown that the proposed method can extract features efficiently by using efficient data structure such as suffix array in cases in which substrings are used as features of datasets such as text and DNA.

Report

(5 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (8 results)

All 2017 2016 2014 Other

All Int'l Joint Research (2 results) Journal Article (1 results) (of which Peer Reviewed: 1 results,  Acknowledgement Compliant: 1 results) Presentation (4 results) (of which Int'l Joint Research: 2 results) Remarks (1 results)

  • [Int'l Joint Research] Rudjer Boskovic Institute(Croatia)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] Microsoft Research(英国)

    • Related Report
      2016 Research-status Report
  • [Journal Article] Asynchronous Feature Extraction for Large-Scale Linear Predictors2016

    • Author(s)
      Shin Matsushima
    • Journal Title

      Lecture Notes in Computer Science

      Volume: 9851 Pages: 604-618

    • DOI

      10.1007/978-3-319-46128-1_38

    • ISBN
      9783319461274, 9783319461281
    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] 大規模な線形予測器のための非同期特徴抽出スキーム2017

    • Author(s)
      松島慎
    • Organizer
      統計的モデリングと計算アルゴリズムの数理と展開
    • Place of Presentation
      名古屋大学(愛知県)
    • Year and Date
      2017-02-18
    • Related Report
      2016 Research-status Report
  • [Presentation] Distributed Stochastic Optimization of Regularized Risk via Saddle-point Problem2017

    • Author(s)
      Shin Matsushima, Hyokun Yun, Xinhua Zhang, S.V.N. Vishwanathan
    • Organizer
      In Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Lecture Notes in Computer Science (LNCS)
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Asynchronous Feature Extraction for Large-Scale Linear Predictors2016

    • Author(s)
      Shin Matsushima
    • Organizer
      ECML PKDD: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
    • Place of Presentation
      Riva del Garda, Italy
    • Year and Date
      2016-09-19
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] 正則化付き経験リスク最小化における分散最適化法2014

    • Author(s)
      松島慎
    • Organizer
      日本応用数理学会年会
    • Place of Presentation
      政策研究大学院大学(東京都)
    • Year and Date
      2014-09-05
    • Related Report
      2014 Research-status Report
  • [Remarks] 松島研究室 研究テーマ

    • URL

      https://ml.c.u-tokyo.ac.jp/research/

    • Related Report
      2017 Annual Research Report

URL: 

Published: 2014-04-04   Modified: 2022-02-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi