A machine learning based approach to analysing latent substructure of graph data
Project/Area Number |
26730120
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Intelligent informatics
|
Research Institution | Nagoya Institute of Technology (2015-2016) Kyoto University (2014) |
Principal Investigator |
Karasuyama Masayuki 名古屋工業大学, 工学(系)研究科(研究院), 准教授 (40628640)
|
Project Period (FY) |
2014-04-01 – 2017-03-31
|
Project Status |
Completed (Fiscal Year 2016)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2015: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2014: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 機械学習 / グラフ / 多様体学習 / 半教師学習 / 半教師付き学習 / 多様体 / バイオインフォマティクス |
Outline of Final Research Achievements |
A variety of data can be represented as a graph. For statistical data analysis based on graphs, it is important to consider setting appropriate parameters of graphs and extracting informative structure. This study focuses on a methodological study of ``machine learning'' based on graph data. In particular, the label estimation problem on a graph and the important subgraph identification problem have been considered. For example, accurate label estimation methods and scalable subgraph identification methods are required by biological data analysis.
|
Report
(4 results)
Research Products
(9 results)
-
-
-
-
-
-
-
-
-
[Book] 統計的学習の基礎 -データマイニング・推論・予測-2014
Author(s)
杉山 将, 井手 剛, 神嶌 敏弘, 栗田 多喜夫, 前田 英作監訳, 井尻 善久, 井手 剛, 岩田 具治, 金森 敬文, 兼村 厚範, 烏山 昌幸, 河原 吉伸, 木村 昭悟, 小西 嘉典, 酒井 智弥, 鈴木 大慈, 竹内 一郎, 玉木 徹, 出口 大輔, 冨岡 亮太, 波部 斉, 前田 新一, 持橋 大地, 山田 誠
Total Pages
888
Publisher
共立出版
Related Report