Study on knots, links and spatial graphs using pseudo diagrams
Project/Area Number |
26800039
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Geometry
|
Research Institution | Nara University of Education |
Principal Investigator |
Hanaki Ryo 奈良教育大学, 教育学部, 准教授 (70549162)
|
Research Collaborator |
YOSHII Takatoshi 奈良教育大学, 教育学部, 准教授
TANAKA Ryo 奈良教育大学, 大学院
MOTOMURA You 奈良教育大学, 大学院
FUJII Katsuya 奈良教育大学, 大学院
NAKANO Masaki 奈良教育大学, 大学院
|
Project Period (FY) |
2014-04-01 – 2017-03-31
|
Project Status |
Completed (Fiscal Year 2016)
|
Budget Amount *help |
¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2015: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2014: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | 結び目理論 / 空間グラフ / 結び目の影 / 射影像 / 準ダイアグラム / 結び目 / ダイアグラム / 自明化数 |
Outline of Final Research Achievements |
Recently study on projections (shadows) is active in knot theory and spatial graph theory. The head have introduced the notion of pseudo diagrams. We expanded this notion and made tables of knot shadows with a few double points. We defined knot invariants to knot shadows and forwarded unknotting numbers of positive knots. We convened classes for elementary school students and events for people at large.
|
Report
(4 results)
Research Products
(11 results)