Higher order pseudoconvexity for domains with Levi-flat boundary
Project/Area Number |
26800057
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Basic analysis
|
Research Institution | Shizuoka University (2017) Tokyo University of Science (2015-2016) Nagoya University (2014) |
Principal Investigator |
|
Research Collaborator |
Brinkschulte Judith Universität Leipzig, Mathematisches Institut, Wissenschaftlicher Mitarbeiter
|
Project Period (FY) |
2014-04-01 – 2018-03-31
|
Project Status |
Completed (Fiscal Year 2017)
|
Budget Amount *help |
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2014: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | レビ平坦曲面 / 複素解析幾何 / 多変数関数論 / 葉層構造論 / 微分幾何学 / ポテンシャル論 / エルゴード理論 / 国際情報交換 / モンジュアンペール方程式 / 超幾何関数 / ハーディー空間 / モンジュ・アンペール測度 / 多重劣調和関数 / 曲率 |
Outline of Final Research Achievements |
This research project focused on Levi-flats, manifolds foliated by complex manifolds. Combining ideas from complex analysis, theory of dynamical system, and differential geometry, we obtained following results: We improved known curvature restrictions for hypothetical Levi-flats in complex projective planes. We proved an inequality for the Diederich-Fornaess index on abstract Levi-flats. We gave potential theoretic proof for non-existence of bounded holomorphic functions on bi-disk invariant by the diagonal action of Fuchsian groups without relying on ergodicity theorems, and also found an explicit construction for such invariant holomorphic functions by means of integral transformations.
|
Report
(5 results)
Research Products
(45 results)