• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Multivariate statistical inference for high-dimensional data and its application

Research Project

Project/Area Number 26800088
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionKagoshima University (2016-2017)
Nihon University (2014-2015)

Principal Investigator

YAMADA Takayuki  鹿児島大学, 共通教育センター, 講師 (60510956)

Project Period (FY) 2014-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2014: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords多変量解析 / 高次元データ / 漸近理論 / 多変量統計解析 / 漸近論 / 統計的推論 / 判別分析 / 正規性の診断 / 統計的推測
Outline of Final Research Achievements

Firstly, we propose an estimate of multivariate 3rd moment which is well defined for the case that the dimensionality of the observation vector is larger than the sample size. As an application, we apply to testing the multivariate normality.

Secondary, we propose a cut-off point for the classical linear discriminant rule in 2 groups which one of two types of expected probability of misclassification takes pre-setting level. It is derived by the asymptotic distribution for the studentized linear discriminant function under the assumption that the population has multivariate normal distribution. The asymptotic distribution which we dealt is under the high-dimensional asymptotic framework that the dimension and the sample size go to infinity together while the ratio of the dimension to the sample size converges to a constant in [0,1).

Report

(5 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • 2014 Research-status Report
  • Research Products

    (9 results)

All 2017 2016 2014

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (7 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Interval estimation in discriminant analysis for large dimension2017

    • Author(s)
      Yamada Takayuki、Himeno Tetsuto、Sakurai Tetsuro
    • Journal Title

      Communications in Statistics - Theory and Methods

      Volume: 46 Issue: 18 Pages: 9042-9052

    • DOI

      10.1080/03610926.2016.1202282

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Asymptotic cut-off point in linear discriminant rule to adjust the misclassification probability for large dimensions2017

    • Author(s)
      Takayuki Yamada, Tetsuto Himeno, Tetsuro Sakurai
    • Journal Title

      Hiroshima math journal

      Volume: 47 Pages: 319-348

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Presentation] Estimation of multivariate 3rd moment for high-dimensional data and its application for testing multivariate normality2017

    • Author(s)
      Takayuki Yamada, Tetsuto Himeno
    • Organizer
      ISI61st World Statistical Congress
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 一般化した分布の仮定の下での高次元MANOVA問題2017

    • Author(s)
      姫野哲人、山田隆行
    • Organizer
      2017年度 統計関連学会連合大会
    • Related Report
      2017 Annual Research Report
  • [Presentation] WおよびZ判別法について~ー大標本かつ高次元の下での考察2017

    • Author(s)
      山田隆行、櫻井哲朗、藤越康祝
    • Organizer
      2017年度 統計関連学会連合大会
    • Related Report
      2017 Annual Research Report
  • [Presentation] Comparison of EER for W- and Z- rules when the dimension is large2017

    • Author(s)
      Takayuki Yamada, Tetsuro Sakurai, Yasunori Fujikoshi
    • Organizer
      2017 Hangzhou International Statistical Symposium
    • Related Report
      2017 Annual Research Report
  • [Presentation] 不等分散を仮定した高次元成長曲線モデルにおける一般化線形仮説の検定について2017

    • Author(s)
      山田隆行、姫野哲人
    • Organizer
      日本計算機統計学会 第31回シンポジウム
    • Related Report
      2017 Annual Research Report
  • [Presentation] 高次元データに対する 3 次モーメントを使った正規性の診断2016

    • Author(s)
      山田隆行、姫野哲人
    • Organizer
      日本計算機統計学会第30回シンポジウム
    • Place of Presentation
      プラサ ヴェルデ(静岡県・沼津市)
    • Year and Date
      2016-11-24
    • Related Report
      2016 Research-status Report
  • [Presentation] 非正規性の下での多変量線形モデルに対する高次元漸近理論2014

    • Author(s)
      姫野哲人、山田隆行
    • Organizer
      2014年度 統計関連学会連合大会
    • Place of Presentation
      東京大学
    • Year and Date
      2014-09-16
    • Related Report
      2014 Research-status Report

URL: 

Published: 2014-04-04   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi