• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Methods of functional analysis and numerical analysis for mathematical sciences

Research Project

Project/Area Number 60460004
Research Category

Grant-in-Aid for General Scientific Research (B)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionUniversity of Tokyo

Principal Investigator

ITO Seizo  Dept. of Math., Fac. of Sci., Univ. of Tokyo, Professor, 理学部, 教授 (40011423)

Co-Investigator(Kenkyū-buntansha) SUZUKI Takasi  Dept. of Math., Fac. of Sci., Univ. of Tokyo, Lecturer, 理学部, 講師 (40114516)
KUSUOKA Shigeo  Dept. of Math., Fac. of Sci., Univ. of Tokyo, Lecturer, 理学部, 助教授 (00114463)
OSHIMA Tosio  Dept. of Math., Fac. of Sci., Univ. of Tokyo, Associate Professor, 理学部, 助教授 (50011721)
KOMATSU Hikosaburo  Dept. of Math., Fac. of Sci., Univ. of Tokyo, Professor, 理学部, 教授 (40011473)
FUJITA Hiroshi  Dept. of Math., Fac. of Sci., Univ. of Tokyo, Professor, 理学部, 教授 (80011427)
Project Period (FY) 1985 – 1986
Project Status Completed (Fiscal Year 1986)
Budget Amount *help
¥7,300,000 (Direct Cost: ¥7,300,000)
Fiscal Year 1986: ¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 1985: ¥3,800,000 (Direct Cost: ¥3,800,000)
Keywordsfunctional analysis / numerical analysis / nonlinear problems / free boundary / bifurcation / Mariavan calculus / マリヤバン解析法 / 逆問題
Research Abstract

First of all, by this project important applications of methods of functional analysis to nonlinear problems have been studied and promoted. Among various results thus obtained, the following deserves a particular mention; Analytical and numerical analysis of a free boundary problem arising from a mathematical study of fluid motion arround planets. Nonlinear eigenvalue problems and related bifurcation problems for <DELTA> u + <lambda> <e^u> = 0. Blowing-up problems of solutions of quasi-linear parabolic equations. Actually, these results are important by their own right but are extremely interesting because of profound combination of functional analysis with numerical analysis and function theoretic/differential geometric methods. Furthermore, some remarkable results have been obtained in connection with partial differential equations by means of a very stochastic method, i.e. the Mariavan calculus. Finally, a considerable progress in the study of spectral inverse problems has been made by this project.

Report

(1 results)
  • 1986 Final Research Report Summary
  • Research Products

    (11 results)

All Other

All Publications (11 results)

  • [Publications] 藤田宏,鈴木貴: Numer.Math.49. 529-544 (1986)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] 藤田宏,岡本久,東海林まゆみ: Japan J.Appl.Math.2. 197-210 (1985)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] 小松彦三郎: Taniguchi Symp.HERT,Katata. 155-179 (1984)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] 大島利雄: 数学. 37. 97-112 (1985)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] 楠岡成雄: Springer Lecture Notes in Math.1158. 141-157 (1986)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] 鈴木貴: J.Math.Soc.Japan. 38. 39-65 (1986)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] 伊藤清三: "優調和函数と理想境界" 紀伊国屋, (1987)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] Hiroshi Fujita ; T. Suzuki: "A Remark on the L-Bounds of the Ritz operator Associated with a Finite Element Approximation." Numer. Math.49. 529-544 (1986)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] Hiroshi Fujita ; H. Okamoto ; M. Shoji): "A numerical approach to a free boundary problem for a circulating perfect fluid." Japan. J. Appl. Math.2. 197-210 (1985)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] Hikosaburo Komatsu: "Irregularity of hyperbolic operators." Taniguchi Symp., HERT, Katata (1984). 155-179 (1985)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] Shigeo Kusuoka: "The generalized Malliavin calculus based on Brownian sheet and Bismut's expansion formula for large deviation." Springer Lecture Notes in Math.1158. 141-157 (1986)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary

URL: 

Published: 1987-03-31   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi