• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Finite Difference Method and Finite Element Method on Manifolds, and Their Applications

Research Project

Project/Area Number 60540110
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionHIROSHIMA UNIVERSITY

Principal Investigator

MIZUMOTO Hisao  Hiroshima Univ., Fac. Int. Arts & Sci., Prof., 総合科学部, 教授 (50032917)

Co-Investigator(Kenkyū-buntansha) SAKUMA Motoyoshi  Hiroshima Univ., Fac. Int. Arts & Sci., Prof., 総合科学部, 教授 (10035298)
TASHIRO Yoshihiro  Hiroshima Univ., Fac. Int. Arts & Sci., Prof., 総合科学部, 教授 (90032995)
EGUCHI Masaaki (ITANO Masaaki)  Hiroshima Univ., Fac. Int. Arts & Sci., Prof., 総合科学部, 教授 (30037220)
板野 暢之  広島大学, 総合科学部, 教授 (80034544)
MIZUTA Yoshihiro  Hiroshima Univ., Fac. Int. Arts & Sci., Assoc. Prof., 総合科学部, 助教授 (00093815)
Project Period (FY) 1985 – 1986
Project Status Completed (Fiscal Year 1986)
Budget Amount *help
¥2,500,000 (Direct Cost: ¥2,500,000)
Fiscal Year 1986: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1985: ¥1,500,000 (Direct Cost: ¥1,500,000)
Keywordsmanifold / Riemann surface / differential form / finite element method / finite difference method / periodicity moduli / modulus
Research Abstract

(1) A method of finite element approximations on a Riemann surface. Our method matches the abstruct definition of a Riemann surface,and also will offer a new technique and high utility in numerical calculation not only for the case of Riemann surfaces but also for the case of plane domains. It is a peculiarity of our method that by means of adopting a finite element approximation on a parametric disk of each critical point of a Riemann surface, approximations of high accuracy is obtained.
(2) Determination of the modulus of quadrilaterals by finite element methods. We establish a method by which a fairly good approximation of the modulus of quadrilaterals on the complex plane is obtained. It is a peculiarity of our method that on a neighborhood of each critical point on the boundary, the same method as (1) is adopted.

Report

(1 results)
  • 1986 Final Research Report Summary
  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] 水田義弘: J.Math.Soc.Japan. 38. 509-513 (1986)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] FISHER,Brian: Mem.Fac.Int.Arts & Sci.,Hiroshima Univ.11. 1-15 (1986)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] 江口正晃: J.Functional Analysis. 70. (1987)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] MIZUMOTO, Hisao: "Finite element approximations of harmonic differentials on a Riemann surface."

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] MIZUMOTO, Hisao: "Determination of the modulus of quadrilaterals by finite element methods."

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] MIZUTA, Yoshihiro: "On removability of sets for holomorphic and harmonic functions." J. Math. Soc. Japan. 38. 509-513 (1986)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] FISHER, Brian: "Some results on distributions and the change of variable." Mem. Fac. Int. Arts & Sci., Hiroshima Univ.11. 1-15 (1986)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] EGUCHI, Masaaki: "A Hardy- Littlewood theorem for spherical Fourier transform on symmetric spaces." J. Functional Analysis. 70. (1987)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary

URL: 

Published: 1987-03-31   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi