• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Fundamental and applicable study of integral operators

Research Project

Project/Area Number 60540116
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionUniversity of Osaka Prefecture

Principal Investigator

OKANO Hatsuo  Department of Mathematics, University of Osaka Prefecture, 総合科学部, 教授 (40079033)

Co-Investigator(Kenkyū-buntansha) TOZAKI Yoshiharu  Department of Mathematics, University of Osaka Prefecture, 総合科学部, 助手 (70079036)
TANIGUCHI Kazuo  Department of Mathematics, University of Osaka Prefecture, 総合科学部, 講師 (80079037)
SHINKAI Kenzo  Department of Mathematics, University of Osaka Prefecture, 総合科学部, 教授 (50079034)
Project Period (FY) 1985 – 1986
Project Status Completed (Fiscal Year 1986)
Budget Amount *help
¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 1986: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 1985: ¥900,000 (Direct Cost: ¥900,000)
KeywordsPseudo-differential operator / Fourier integral operator / Weakly hyperbolic equation / Stokes coefficient / Gevrey symbol / Multi-product / 多重積 / 特異性の伝播 / 準楕円性 / 波面集合の分岐
Research Abstract

We investigated properties of Fourier integral operators and studied the singularities of solutions of weakly hyperbolic operators. We clarified the Gevrey wave front sets of solutions of differential equations with coefficients in Gevrey classes. The results are as follows:
1. The appearance of wave front sets of fundamental solutions of weakly hyperbolic operators depends on their lower order terms and their fundamental solutions may have the Gevrey wave front sets. In our project we construct exactly the fundamental solutions and investigate their wave front sets and Gevrey wave front sets. Then we can show that the solutions of the Cauchy problem have the branching singularities in a Gevrey class. In order to construct the fundamental solutions we use the Stokes coefficients of associated ordinary differential equations. Then, we can determine exactly whether or not the solution of the Cauchy problem of a degenerate hyperbolic equation has branching singularities.
2. In the study of singularities of solutions of differential equations with coefficients in Gevrey classes we give a precise estimate of multi-products of Fourier integral operators and pseudo-differential operators. We construct, as an application, the fundamental solution for a weakly hyperbolic operator and the parametrix of a hypoelliptic operator, and investigate the Gevrey wave front sets of solutions. Throughout this project we use mainly oscillatory integrals.

Report

(1 results)
  • 1986 Final Research Report Summary
  • Research Products

    (11 results)

All Other

All Publications (11 results)

  • [Publications] K.Shinkai: Math.Japonica. 30. 701-717 (1985)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] K.Shinkai: University of Minnesota Mathematics Report. 86-134. (1987)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] K.Taniguchi: Math.Japonica. 30. 719-741 (1985)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] K.Taniguchi: Proc.Japan Acad.61. 291-293 (1985)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] Y.Morimoto K.Taniguchi: Osaka J.Math.23. 765-814 (1986)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] K.Taniguchi: Math.Japonica. 32. 123-138 (1987)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] Kenzo Shinkai: "Gevrey wave front sets of solutions for a weakly hyperbolic operator" Math. Japonica. 30. 701-717 (1985)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] Kenzo Shinkai: "Stokes multipliers and a weakly hyperbolic operator" University of Minnesota, Mathematical Report. #86-134. (1987)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] Kazuo Taniguchi: "Pseudo-differential operators acting on ultradistributions" Math. Japonica. 30. 719-741 (1985)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] Kazuo Taniguchi: "On multi-products of pseudo-differential operators in Gevrey classes and its application to Gevrey hypoellipticity" Proc. Japan Acad.61. 291-293 (1985)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary
  • [Publications] Yoshinori Morimoto and Kazuo Taniguchi: "Propagation of wave front sets of solutions of the Cauchy problem for hyperbolic equations in Gevrey classes" Osaka J. Math.23. 765-814 (1986)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1986 Final Research Report Summary

URL: 

Published: 1987-03-31   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi