• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Analysis on Complex Manifold

Research Project

Project/Area Number 62302003
Research Category

Grant-in-Aid for Co-operative Research (A)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionTOKYO INSTITUT OF TECHNOLOGY

Principal Investigator

NOGUCHI Junjiro  Faculty of Science, Tokyo Institut of Technology, 理学部, 教授 (20033920)

Co-Investigator(Kenkyū-buntansha) KAZAMA Hideki  College of General Education, Kyushu University, 教養部, 助教授 (10037252)
TANIGUCHI Masahiko  Faculty of Science, Kyoto University, 理学部, 助教授 (50108974)
IMAYOSHI Yoichi  College of General Education, Osaka University, 教養部, 助教授 (30091656)
ITO Masayuki  College of General Education, Nagoya University, 教養部, 教授 (60022638)
SUITA Nobuyuki  Faculty of Science, Tokyo Institut of Technology, 理学部, 教授 (90016022)
Project Period (FY) 1987 – 1988
Project Status Completed (Fiscal Year 1988)
Budget Amount *help
¥11,600,000 (Direct Cost: ¥11,600,000)
Fiscal Year 1988: ¥5,800,000 (Direct Cost: ¥5,800,000)
Fiscal Year 1987: ¥5,800,000 (Direct Cost: ¥5,800,000)
Keywordscomplex analysis / complex manifold / potential theory / Riemann surface / several complex variables / holomorphic function / hyperbolic manifold / 正則関数 / タイヒミューラー空間 / 解析写像 / 調和関数 / 優調和関数 / 正則写像 / 有理型関数 / クライン群
Research Abstract

There are a number of outstanding results obtained under the present project and thus the aim of the project is thought to be fulfilled. One of those results is due to H.Fujimoto: He finally solved the so-called Gauss map conjecture (1961). It asserts that there are at most 4 exceptional values of the Gauss map of a complete non-fiat minimal surface in the real 3-dimensional euclidean space. He received the 1988 Geometry Prize (Japan Math. Soc.) for this work. It has been a big problem to extend a L^2 holomorphic function defined on a submanifold of a stein manifold to the whole space as L^2 holmorphic functions. T.Ohsawa solved this problem even with norm estimate. He also obtained an isomorphism theorem between the intersection and the L^2 cohomologies, and moreover established the Hodge theory on pseudoconvex Kahler manifolds (with I. Takegoshi). J.Noguchi proved the extension-convergence theorem for sequences of holomorphic mappings into a hyperbolic space anded it to obtain precise structure theorems of the moduli spaces of holomorphic mappings the results have application to the diophantus geometry over function fields and answer a few problems posed by S.Lang and other. T.Murai deepened the sutdy of analytic capacity, and solved the Vitushkin conhecture in the joint work with P.Jones. Based on works of Fricke and Weil, K.Saito found a new method to construct the Teichmuller space, which carries a canonical structure of S^1-bundle and ample group theoretical structure. It is hoped the researchs of the present project will be more actively studied and develop.

Report

(3 results)
  • 1988 Annual Research Report   Final Research Report Summary
  • 1987 Annual Research Report
  • Research Products

    (29 results)

All Other

All Publications (29 results)

  • [Publications] Fujimoto,Hirotaka: J.Math.Soc.Japan. 108. 235-247 (1988)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Ohsawa,Takano: Publ. RIMS. 24. 265-275 (1988)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Noguchi,Juhjiro: Invent, Math.93. 15-34 (1988)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Murai,Takafumi: Pacific J. Math.132. 1-16 (1987)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Imayoshi,Yoichi: Proc., Holomorphic Functions and Moduli II (Springer-Verlag). 207-219 (1988)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Saito,Kyoji: to appear.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Murai, Takafumi: "A Real Variable Method for Cauchy Tranform, and Analytic Capacity." Springer-Verlag., 133 (1988)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Akahori, Takao: "A New Approach to the Local Embedding Theorem of CR-Structures of nZ4(the Local Solvability for He Operator Ob in the scnse of the Abstract Sense)" Amer. Math. Soc., XV+257 (1987)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Fujimoto, Hirotaka.: "On the number of exceptional values of the Gauss map of minimal surfaces" J. Math. Soc. Japan. 108. 235-247 (1988)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Ohsawa, Takeo.: "On the extension of L^2 holomorphic functions II" Publ. RIMS, Kyoto Univ.24. 265-275 (1988)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Noguchi, Junjiro.: "Moduli spaces of hololomorphic mappings into hyperbolically imbedded complex spaces and locally symmetric spaces" Invent. Math.93. 15-34 (1988)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Murai, Takafumi.: "Positive analitic capacity but Buffon needle probability zero" Pacific J. Math.132. 1-16 (1987)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Imayoshi, Yoichi.: "A finiteness theorem for holomorphic families of Riemann surfaces" Holomorphic Functions and Moduli II. 207-219 (1988)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Murai, Takafumi.: A Real Variable Method for the Cauchy Transform, and Analytic Capacity. Springer-Verlag, 133 (1307)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] T.Ohsawa.;K.Takegoshi.: Math.Z.197. 1-12 (1988)

    • Related Report
      1988 Annual Research Report
  • [Publications] Y.Imayoshi.;H.Shiga.: Holomorphic Functions and Moduli,Vol II Math.Sci..Res.Inst.Publ.11. 207-219 (1988)

    • Related Report
      1988 Annual Research Report
  • [Publications] M.Nakai.: Trans.Amer.Math.Soc.309. 231-252 (1988)

    • Related Report
      1988 Annual Research Report
  • [Publications] H.Yanagihara.: J.d'Analyse Math.51. 1-32 (1988)

    • Related Report
      1988 Annual Research Report
  • [Publications] M.Sakai.: Holomorphic Functions and Moduli,Vol.I Math.Sci.Res.Inst.Publ.10. 119-131 (1988)

    • Related Report
      1988 Annual Research Report
  • [Publications] T.Murai.;P.Jones.: Pacific J.Math.133. 99-144 (1988)

    • Related Report
      1988 Annual Research Report
  • [Publications] T.Murai.: "A Real Variable Method for Cauchy Transform,and Analytic Capacity" Springer.Verlag, 133 (1988)

    • Related Report
      1988 Annual Research Report
  • [Publications] S.Saitou.: "Theory of Reproducing Kernels and Its Applications" Longman Scientific & Technical, 153 (1988)

    • Related Report
      1988 Annual Research Report
  • [Publications] J.Noguchi: RIMS Kokyuroku. 639. 77-97 (988)

    • Related Report
      1987 Annual Research Report
  • [Publications] M.Sakai: Trans.Amer.Math.Soc.299. 431-479 (1987)

    • Related Report
      1987 Annual Research Report
  • [Publications] H.Aikawa: Ann.Acad.Sci.Fennicae Ser.A-1. 12. 119-134 (1987)

    • Related Report
      1987 Annual Research Report
  • [Publications] M.Shiba: Trans.Amer.Math.Soc.301. 299-311 (1987)

    • Related Report
      1987 Annual Research Report
  • [Publications] M.Taniguchi: Kodai Math.J.10. 165-173 (1987)

    • Related Report
      1987 Annual Research Report
  • [Publications] K.Niino: Tohoku Math.J.39. 313-328 (1987)

    • Related Report
      1987 Annual Research Report
  • [Publications] T.Akahori: "A New Approach to the Local Embeddeing Theorem of CR-Structures of n 4(the Local Solvability for the Operator ∂^^-_b in the Abstract Sense)" American Mathematical Society, xv+257 (1987)

    • Related Report
      1987 Annual Research Report

URL: 

Published: 1987-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi