• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Harmonic Analysis on Symmetric Spaces

Research Project

Project/Area Number 62460004
Research Category

Grant-in-Aid for General Scientific Research (B)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionUniversity of Tokyo, Faculty of Science, Department of Mathematics

Principal Investigator

OSHIMA Toshio  University of Tokyo, Faculty of Science, Professor, 理学部, 教授 (50011721)

Co-Investigator(Kenkyū-buntansha) KOBAYASHI Toshiyuki  University of Tokyo, Faculty of Science, Assistant, 理学部, 助手 (80201490)
TOSE Nobuyuki  University of Tokyo, Faculty of Science, Assistant, 理学部, 助手 (00183492)
KATAOKA Kiyoomi  University of Tokyo, Faculty of Science, Associate Professor, 理学部, 助教授 (60107688)
IHARA Yasutaka  University of Tokyo, Faculty of Science, Professor, 理学部, 教授 (70011484)
HATTORI Akio  University of Tokyo, Faculty of Science, Professor, 理学部, 教授 (80011469)
加藤 和也  東京大学, 理学部, 助教授 (90111450)
川又 雄二郎  東京大学, 理学部, 助教授 (90126037)
木村 俊房  東京大学, 理学部, 教授 (50011466)
Project Period (FY) 1987 – 1988
Project Status Completed (Fiscal Year 1988)
Budget Amount *help
¥5,400,000 (Direct Cost: ¥5,400,000)
Fiscal Year 1988: ¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 1987: ¥3,200,000 (Direct Cost: ¥3,200,000)
KeywordsSymmetric space / Homogeneous space / Harmonic analysis / Unitary representation / Lie group / Boundary value / 代数解析 / 半単純リー群 / 境界値問題 / 主系列表現 / 離散系列表現 / 半単純対称空間
Research Abstract

1. Under this project, Oshima organized a simposium at University of Tokyo on January 1988 and also summer seminars at Institute of Vocational training on August 1988 and August 1989, and we discussed the present stage of the project and its future development.
2. Oshima published several important results which will be used to obtain the main aim in harmonic analysis on semisimple symmetric spaces, the Plancherel formula. They are as follows: Oshima realized a smooth imbedding of the symmetric space in a compact manifold and by using it, Oshima constructed boundary value maps for eigenfunctions of the invariant differential operators and discovered that the asymptotic of the eigenfunctions at infinity are characterized by a simple geometric structure. By the same method Oshima proved a certain boundedness of unitarizable Harish-Chandra modules realized on a homogeneous space.
3. Kobayashi calculated the spectra of the Laplacian on a homogeneous space which is a fibre bundle over Riemann … More ian symmetric space. This gives a counter example of a conjecture given by Sunada. Kobayashi also proved the existence of uniform lattices in several series of semisimple symmetric spaces.
4. Hattori proved a certain vanishing theorem of Kodaira type for a line bundle over a almost complex manifold with S^1-action when the dimension of the manifold is small.
5. Masuda shows the existence and boundedness of solutions for some reaction-diffusion systems posed by Gierer-Meinhard as mathematical models of biological formation.
6. Ihara studied the absolute Galois group over the rational number field and its natural actions on the completion of the fundamental group of a certain algebraic manifold. Ihara is making clear that the actions give sufficiently general non-abelian representations of the Galois group and obtained several applications to number theory.
7. Kataoka and Tose extended the theory of microlocal propagation of regularities for microlocal hyperbolic boundary value problems originated by Sjostrand. Their result also contains and existence theorem of the solutions. Less

Report

(3 results)
  • 1988 Annual Research Report   Final Research Report Summary
  • 1987 Annual Research Report
  • Research Products

    (23 results)

All Other

All Publications (23 results)

  • [Publications] Toshio Oshima: Advanced Studies in Pure Math.14. 561-601 (1988)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Toshio Oshima: Advanced Studies in Pure Math.14. 603-650 (1988)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Akio Hattori: Proc.Intern.Conf.on Transf.Groups,1987 Osaka.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Toshiyuki Kobayashi 他: Forum Mathematicum. 1. 69-79 (1989)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Yasutaka Ihara 他: Ann.of Math.128. 271-293 (1988)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Kiyomi Kataoka: Prospect of Algebraic Analysis.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Toshio Oshima: "A realization of semisimple symmetric spaces and construction of boundary value maps" Advanced Studies in Pure Math.14. 603-650 (1988)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Toshio Oshima: "Asymptotic behavior of spherical functions on semisimple symmetric spaces" Advanced Studies in Pure Math.14. 561-601 (1988)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Akio Hattori: "Circle actions on symmetric manifolds" Proc. Intern. Conf. on Transf. Groups, 1987, Osaka, to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Yasutaka Ihara (with G. Anderson): "Pro-l branched coverings of P^1 and higher circular l-units" Ann. of Math.128. 271-293 (1988)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Kiyomi Kataoka: "Some applications of microlocal energy methods to analytic hypoellipticity" Prospect of Algebraic Analysis, to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1988 Final Research Report Summary
  • [Publications] Toshio,Oshima: Advanced Studies in Pure Math.14. 603-650 (1988)

    • Related Report
      1988 Annual Research Report
  • [Publications] Toshio,Oshima: Advanced Studies in Pure Math.14. 561-601 (1988)

    • Related Report
      1988 Annual Research Report
  • [Publications] Akio,Hattori: Proc.Intern.Conf.on Transf.Groups,1987,Osake,to appear.

    • Related Report
      1988 Annual Research Report
  • [Publications] Yasatake,Ihara: Ann.of Math. 128. 271-293 (1988)

    • Related Report
      1988 Annual Research Report
  • [Publications] Kiyomi,Kataoka: Prospect of Alqebraic Analysis,to appear.

    • Related Report
      1988 Annual Research Report
  • [Publications] Toshiyuki,Kobayashi;T.Sunada;K.Ono: Forum Mathematicum. 1. 69-79 (1989)

    • Related Report
      1988 Annual Research Report
  • [Publications] 大島利雄: Adv.Studies in Pure Math.14. (1988)

    • Related Report
      1987 Annual Research Report
  • [Publications] 大島利雄: Adv.Studies in Pure Math.14. (1988)

    • Related Report
      1987 Annual Research Report
  • [Publications] 伊原康隆,伊吹山知義 と共著: Math.Annalen. 278. 307-327 (1987)

    • Related Report
      1987 Annual Research Report
  • [Publications] 川又雄二郎: Ann.of.Math.

    • Related Report
      1987 Annual Research Report
  • [Publications] 加藤和也: Adv.Studies in Pure Math.10. 207-253 (1987)

    • Related Report
      1987 Annual Research Report
  • [Publications] 木村俊房: J.of Fac.Sci.,Univ.of Tokyo. 35. (1987)

    • Related Report
      1987 Annual Research Report

URL: 

Published: 1987-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi