• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Lle Dimension Subgroups

Research Project

Project/Area Number 63540034
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 代数学・幾何学
Research InstitutionAichi University of Education

Principal Investigator

TAHARA KenーIchi  Department of Mathematics, Professor, 教育学部, 教授 (00024026)

Co-Investigator(Kenkyū-buntansha) WATANABE Osamu  Aichi Univ. Educ., Professor, 教育学部, 教授 (30024011)
IKEDA Yoshiaki  Aichi Univ. Educ., Professor, 教育学部, 教授 (00022640)
FURUKAWA Yasukuni  Aichi Univ. Educ., Professor, 教育学部, 教授 (90024033)
HAYASHI Makoto  Aichi Univ. Educ., Assis. Professor, 教育学部, 助教授 (40109369)
野田 明男  愛知教育大学, 教育学部, 助教授 (80024090)
金光 三男  愛知教育大学, 教育学部, 教授 (60024014)
佐々喜 守寿  愛知教育大学, 教育学部, 助教授 (90178666)
Project Period (FY) 1988 – 1990
Project Status Completed (Fiscal Year 1990)
Budget Amount *help
¥1,900,000 (Direct Cost: ¥1,900,000)
Fiscal Year 1990: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 1989: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 1988: ¥700,000 (Direct Cost: ¥700,000)
KeywordsIntegral group ring / Augmentation ideal / Lie dimension subgroup / Lie dimension subgroup problem / Lower central series / hie次元部分群 / 添加イテアル / メタ・ア-ベル群 / 次元部分群 / 次元部分列 / 自由群
Research Abstract

Let G be a group with lower central series G = G_1 * G_2 * ・・・ * G_n * G_<n+1> * ・・・. Denote by ZETAG the integral group ring of G over ZETA the ring of rational integers, and by DELTA (G) the augmentation ideal of ZETAG. For any elements alpha, betaepsilonZETAG, we denote (alpha, beta) =alphabeta-betaalpha. We define inductively Lie powers of DELTA(G) as follows ; DELTA^<(1)>(G)=DELTA(G), DELTA^<(n)>(G)=(DELTA^<(nー1)>(G), DELTA(G))ZG = <(alpha, beta)|alphaepsilonDELTA^<(nー1)>(G), betaepsilonDELTA(G)>ZETAG. We define the n-th Liedimension subgroup D_<(n)>(G)= G*(1+DELTA^<(n)>(G)). Then Lie Dimension Subgroup Problem means a characterization of D_<(n)>(G). one of the important results we learned up to now is the following :
Theorem 1 (R. Sandlin). For any n with 1*n*6, it follows D_<(n)>(G)=G_n. At first, we get the following result to get an extension of Theorem 1.
Theorem 2. Let G be a group such that G_2/D_3 has finite exponent. Then rank_<ZETA> DELTA^<(n)>(G) = rank_<ZETA> DELTA^<(2)>(G), for any n*2. In particular, G is a finite group, then rank_<ZETA> DELTA^<(1)>(G) = |G| - 1 rank_<ZETA> DELTA^<(n)>(G)2 DELTA^<(n)>(G) = |G| - |G/G_2| = |G/G_2|(|G_2| - 1 ). Next, we have the following to get information on D_<(n+1)>(G) when we have D_<(n)>(G) = G_n.
Theorem 3. For any n*1, there is a homomorphism PSI_n : G_n/G_<n+1> -> DELTA^<(n)>(G)/DELTA^<(n+1)>(G) such that G_n*(1 + DELTA^<(n+1)>(G)) = D_<(n+1)> (G) <=> PSI_n : injective.

Report

(4 results)
  • 1990 Annual Research Report   Final Research Report Summary
  • 1989 Annual Research Report
  • 1988 Annual Research Report
  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] I.B.S.Passi,Sucheta and KenーIchi Tahara: "Dimension subgrops and Schur multiplicatorーIII" Japan.J.Math.New Ser.13. 371-379 (1987)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] KenーIchi Tahara: "Problems on integral group rings" Essays of Prof.Jang II Um on his 60 birth day Department of Mathematics,Pusan National University. 293-299 (1988)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] Makoto Hayashi: "A note on amalgams" Hokkaido Math.J.19. 431-434 (1990)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] KenーIchi Tahara: "On the rank of the Lie powers of the augmentation ideal"

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] I. B. S. Passi, SUcheta and Ken-ichi Tahara: "Dimension subgroups and Schur multiplicator-III" Japan. J. Math. New Ser.13. 371-379 (1987)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] Kenーichi, Tahara: "Problems on integral group rings" Essays of Prof. Jang Il Um on his 60th birthday Department of Mathematics, Pusan National University.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] Makoto, Hayashi: "A note on amalgams" Hokkaido Math. J.19. 431-434 (1990)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] Kenーichi, Tahara: "On the rank of the Lie powers of the augmentation ideal"

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] 林 誠: "A note on amalgams" Hokkaido Math.J.19. 431-434 (1990)

    • Related Report
      1990 Annual Research Report
  • [Publications] 林 誠,五味 健作: "A pushingーup approach to the quasithin simple finite groups with solvable 2ーlocal subgroups"

    • Related Report
      1990 Annual Research Report
  • [Publications] 金光三男,吉田憲一: "On embedded primary components" Osaka J.Math.26. 665-670 (1989)

    • Related Report
      1989 Annual Research Report
  • [Publications] 林誠: "A pushing-up approach to the guasithin simple finite groups with solvable 2-local subgroups"

    • Related Report
      1989 Annual Research Report
  • [Publications] Osamu,Watanabe: Bull.Aichi Univ.Educ.(Nat.Sci). 38. 21-34 (1989)

    • Related Report
      1988 Annual Research Report
  • [Publications] Akio,Noda: Bull.Aichi Univ.Educ.(Nat.Sci). 38. 35-45 (1989)

    • Related Report
      1988 Annual Research Report

URL: 

Published: 1988-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi