• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on orders of singularities for solutions to partial differential equations

Research Project

Project/Area Number 63540115
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionKyoto University, Faculty of Science

Principal Investigator

MIYATAKE Sadao  Kyoto University, Faculty of Science, Associate Professor, 理学部, 助教授 (10025447)

Co-Investigator(Kenkyū-buntansha) 平井 武  京都大学, 理学部, 教授 (70025310)
楠 幸夫  京都大学, 理学部, 教授 (90025221)
池部 晃生  京都大学, 理学部, 教授 (00025280)
大鍛治 隆司  京都大学, 理学部, 助手 (20160426)
松本 和一郎  京都大学, 理学部, 助手 (40093314)
Project Period (FY) 1988 – 1989
Project Status Completed (Fiscal Year 1989)
Budget Amount *help
¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 1989: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 1988: ¥1,300,000 (Direct Cost: ¥1,300,000)
Keywordsmicrolocal order / singularity / distribution / Fourier integral operator / canonical mapping / hyperbolic equation / phase function / 一段擬微分作用素 / リカッチ方程式 / 特異性の位数 / フーリエ積分作用素
Research Abstract

In this article we define microlocal orders of singularities for distributions and state theorems concerning their important properties. By microlocal orders of singularities we mean not only positions but also directions of singularities. As an application we can clarify how the order of singularity changes by operating Fourier integral operator. For small time t the solution to hyperbolic pseudo- differential equation of order one is described by P_<phi>u , where u is the initial data , phi(x,eta) the phase function and p(x,eta) the amplitude function. Then it holds OS(P_<phi>u;x, xi ) = OS( u; y, eta ) Here OS(u;y, eta ) stands for the order of singularity for u at y in the direction (eta)/(ta1). The mapping (y, eta ) -> (x, xi) is given by the canonical relation generated by phi(x,eta) i.e. y= phi_<eta>(x,eta) and xi= phi_x(x,eta)
Finally we explain OS(u,x_o,xi_o). For f * epsilon' we note OS(f) = inf{r*R, f * H^<-r>} and define OS(f; x_o,xi_o) = inf OS(a(D,X)f) a * S^0, (x_o,xi_o) * (supp a) where (x_o,xi_o) * (supp a) means that a does not vanish in the xi_o - direction. Then it holds the following theorem of Darboux type: For given positive number epsilon there exists delta>O such that OS(f;x_o,xi_o) <less than or equal> OS(s(D,X)f) <less than or equal> OS(f;x_o,xi_o) + epsilon holds for any a * S^0 whose support is contained in delta conic neighborhood of (x_o,xi_o). This inequality plays an important role to prove the first equality.

Report

(3 results)
  • 1989 Annual Research Report   Final Research Report Summary
  • 1988 Annual Research Report
  • Research Products

    (9 results)

All Other

All Publications (9 results)

  • [Publications] Sadao MIYATAKE: "Microlocal orders of singularities for distributions and an application to Fourier integral operators" J.Math.Kyoto Univ.29. 341-363 (1989)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1989 Final Research Report Summary
  • [Publications] Sadao MIYATAKE: "Microlocal orders of singularities for distributions and an application to Fourier integral operators" J. Math. Kyoto Univ.vol. 29. 341-363 (1989)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1989 Final Research Report Summary
  • [Publications] Sadao MIYATAKE: "Microlocal Orders of singularities for distributions and an application to Fourier integral operators" J.Math.Kyoto Univ.29. 341-363 (1989)

    • Related Report
      1989 Annual Research Report
  • [Publications] Sadao MIYATAKE: Journal of Mathematics of Kyoto University. 28. 13-36 (1988)

    • Related Report
      1988 Annual Research Report
  • [Publications] Sadao MIYATAKE: Journal of Mathematics of Kyoto University. 29. (1989)

    • Related Report
      1988 Annual Research Report
  • [Publications] Takashi OKAJI: J.Math.Kyoto Univ.28ー2. 311-322 (1988)

    • Related Report
      1988 Annual Research Report
  • [Publications] Takashi OKAJI: J.Math.Kyoto Univ.28ー2. 323-334 (1988)

    • Related Report
      1988 Annual Research Report
  • [Publications] Yukio KUSUNOKI: Holomorphic Functions and Moduli. 1. 209-213 (1988)

    • Related Report
      1988 Annual Research Report
  • [Publications] Takeshi HIRAI: J.Math.Kyoto Univ.28. 695-749 (1988)

    • Related Report
      1988 Annual Research Report

URL: 

Published: 1988-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi