Publicly Offered Research
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
磁性ナノ粒子は磁石に引き寄せられる性質のみならず、MRIにおける造影効果や、交流磁場中で発熱する性質をもつ。本研究では、酸化鉄の10 nmのマグネタイト表面を正電荷脂質膜で修飾することでマグネタイトカチオニックリポソームを作製し、単一細胞が加温可能な技術を開発した。方法論として、合成生物学的アプローチを導入して、レポーター遺伝子の発現を指標に細胞の熱ストレスを解析するシステムを構築した。HSP70B’プロモーターとTet-Offシステムの融合により構築した熱誘導型人工プロモーターは、熱ショックがかかるとポジティブフィードバックシステムにより、EGFPが高発現し続けることで、温熱ストレスを被った履歴のある細胞が可視的に判別できる。細胞に機能性磁性ナノ粒子を取り込ませて、交流磁場を照射すると、培地の温度上昇は見られないが、目的遺伝子が発現した。このことは、細胞内局所における磁性ナノ粒子の発熱によって、HSP70B’プロモーターが駆動したと考えられる。さらに、磁性ナノ粒子を合成生物学的アプローチで細胞内に生産させる方法を開発した。鉄貯蔵タンパク質であるフェリチンの遺伝子をHeLa細胞に導入して磁性ナノ粒子を細胞内で形成させることによって、遺伝子的に細胞を磁気標識することに成功した。フェリチン遺伝子の発現により磁気標識された細胞は、磁気分離が可能となり、また、MRIの造影効果が得られた。さらに、熱誘導型人工プロモーターを導入したHepG2細胞にフェリチン遺伝子を導入して磁場を照射すると、レポーター遺伝子であるEGFPが発現することから、フェリチン導入細胞が交流磁場で発熱することを見いだした。今後、EGFPを治療遺伝子などの目的遺伝子に交換することで、磁場誘導型の遺伝子治療といった医療への応用が可能であると考えられる。
29年度が最終年度であるため、記入しない。
All 2018 2017 2016
All Presentation (7 results) (of which Invited: 3 results)