• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Establishing statistical inference theory for differential equations using sparse modeling techniques

Publicly Offered Research

Project AreaInitiative for High-Dimensional Data-Driven Science through Deepening of Sparse Modeling
Project/Area Number 16H01532
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Complex systems
Research InstitutionThe University of Tokyo

Principal Investigator

木立 尚孝  東京大学, 大学院新領域創成科学研究科, 准教授 (80415778)

Project Period (FY) 2016-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2016: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywords微分方程式 / 仮説駆動型研究 / データサイエンス / 機械学習 / 集団遺伝学 / バイオテクノロジー / バイオインフォマティクス / スパースモデリング / 次世代シーケンサー / 確率モデル / 疎性モデリング / 数理生物学
Outline of Annual Research Achievements

本研究の主目的は、観測データが従う微分方程式を自動的に導出する、統計的推定論の開発を行うことである。これにより従来微分方程式を用いて解析されてき た自然現象の研究に対して、自然にデータ駆動型の研究が行えるようになることが期待される。具体的には一変数確率非線形微分方程式の一種である、拡散ライト・フィッシャーモデルのパラメータ推定問題を扱ってきた。この手法では、確率密度関数の時間発展を表す偏微分方程式を空間方向に離散化し、連続時間有限状態マルコフ過程に変換してから、集団遺伝学的に重要な、選択係数やドミナンスなどの推定を、期待値最大化法の枠組みで行う。過去の研究と異なる点は、尤度関数の漸近理論を用いて、推定したパラメータの信頼区間を出力できるところであり、これにより、確信度の低い推定をフィルタリングできることである。今年度は、サンプリングなどを使ってパラメータ推定を行う他手法との比較を行った。その結果、精度の面においても計算速度の面においても提案手法が優位性をもつことが示された。この研究については現在投稿論文のリバイスを継続しているところである。
今年度は一変数非線形微分方程式の手法を拡張して、多変数の線形確率微分方程式のパラメータ推定のアルゴリズムの開発を行った。線形確率微分方程式については、ガウス型のシステムノイズをかいていした場合、平方完成を何度も繰り返すことで、尤度関数のパラメータ微分ができることを示した。今後はさらにその結果を元に、多変数多変数の確率非線形微分方程式のパラメータ推定の問題に取り組む予定にしている。

Research Progress Status

平成29年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

平成29年度が最終年度であるため、記入しない。

Report

(2 results)
  • 2017 Annual Research Report
  • 2016 Annual Research Report
  • Research Products

    (4 results)

All 2019 2017 Other

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 2 results,  Acknowledgement Compliant: 1 results) Remarks (2 results)

  • [Journal Article] reactIDR: evaluation of the statistical reproducibility of high-throughput structural analyses towards a robust RNA structure prediction2019

    • Author(s)
      Kawaguchi Risa、Kiryu Hisanori、Iwakiri Junichi、Sese Jun
    • Journal Title

      BMC Bioinformatics

      Volume: 20 Issue: 3 Pages: 130-130

    • DOI

      10.1186/s12859-019-2645-4

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] SCODE: An efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation2017

    • Author(s)
      Matsumoto, H., Kiryu, H., Furusawa, C., Ko, S.H., M., Ko, B.H., S., Gouda, N., Hayashi, T., Nikaido, I.
    • Journal Title

      Bioinformatics

      Volume: 印刷中 Issue: 15 Pages: 2314-2321

    • DOI

      10.1093/bioinformatics/btx194

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Remarks] reactIDR

    • URL

      https://github.com/carushi/reactIDR

    • Related Report
      2017 Annual Research Report
  • [Remarks] SCODE source code

    • URL

      https://github.com/hmatsu1226/SCODE

    • Related Report
      2016 Annual Research Report

URL: 

Published: 2016-04-26   Modified: 2019-12-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi