Publicly Offered Research
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
神経科学の分野において、カルシウムイメージングは多細胞の活動を同時記録する重要な手法の一つである。近年、二光子顕微鏡などの計測装置の急激な発展により、広視野から数十万個の細胞活動を計測することが可能となった。このような計測装置の急速な進歩により、我々は巨大なデータをいかに解析するかという問題に直面するようになった。近年、このような大規模カルシウムイメージングデータから、機械学習の方法を用いて細胞活動を自動検出する試みがある。近年発表された、静的な形態情報でなく、動的な情報から細胞検出を行う手法は、その多くが非負値行列因子分解(Non-negative matrix factorization(NMF))に基づいている。NMFでは、イメージングデータの全フレームをメモリ上に同時に展開しなければならないため、数値計算に大量のメモリが必要である。これがNMFの最大の問題であり、大規模なデータを取り扱う際の制約となる。我々は制限ボルツマン・マシン(Restricted Boltzmann Machine, RBM)による細胞検出手法の開発を行った。非負値行列因子分解で取り扱っていた細胞検出問題を非負型のRBMで再定式化した。フレーム毎に学習が行えるため、上記のメモリの問題が解決できる。RBM に非負性の制約を入れることにより、細胞検出器として動作した。また、より性能を向上させるため、我々はスプレッド関数を導入した。これにより空間的に局所的な情報のみを取り扱うことになるため、データの大規模化による検出性能の低下を防ぐことができる。本手法のGPU への実装を行い、in-vivo 二光子顕微鏡データを用いて本手法の性能を評価した。CNMF(neuron 2016)とSuite2P(bioRxiv 2016)と比べて、非負型のRBMは高い細胞検出性能を有することが確認できた。
29年度が最終年度であるため、記入しない。
All 2018 2017 2016 Other
All Journal Article (13 results) (of which Peer Reviewed: 4 results, Open Access: 1 results) Presentation (10 results) Remarks (2 results) Patent(Industrial Property Rights) (1 results)
Neural Networks
Volume: 102 Pages: 96-106
10.1016/j.neunet.2018.02.014
40021100916
電子情報通信学会技術研究報告
Volume: 117 Pages: 21-26
Volume: 117 Pages: 15-20
Volume: 117 Pages: 9-14
Volume: 117 Pages: 3-8
Journal of the Physical Society of Japan
Volume: 86 Issue: 10 Pages: 104002-104002
10.7566/jpsj.86.104002
40021340771
Volume: 117 Pages: 37-42
Volume: 117 Pages: 109-114
Seibutsu Butsuri
Volume: 57 Issue: 1 Pages: 036-039
10.2142/biophys.57.036
130005296499
Volume: 116 Pages: 13-18
Volume: 116 Pages: 19-24
Volume: 116 Pages: 137-142
IPSJ Transactions on Mathematical Modeling and Its Applications.
Volume: 9 Pages: 24-31
40020907045
http://t2r2.star.titech.ac.jp/cgi-bin/researcherinfo.cgi?q_researcher_content_number=CTT100381316