• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

構造的疎性モデリングのためのメタ学習アルゴリズム体系の構築

Publicly Offered Research

Project AreaInitiative for High-Dimensional Data-Driven Science through Deepening of Sparse Modeling
Project/Area Number 16H01548
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Complex systems
Research InstitutionOsaka University

Principal Investigator

河原 吉伸  大阪大学, 産業科学研究所, 准教授 (00514796)

Project Period (FY) 2016-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2017: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2016: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Keywords機械学習 / スパースモデリング / 劣モジュラ関数 / 動的モード分解 / メタ学習
Outline of Annual Research Achievements

本研究では,データ中の構造的情報を自動的に抽出し構造的疎性モデリングへ利用するメタレベルの学習のための一連の理論/アルゴリズム体系の構築を目的とするものである.特に,劣モジュラ関数から得られる確率分布を用いて,多様な構造的疎性に対して統一的なアプローチや(最適化)計算への帰着が可能な体系の獲得を目指すものである.そして最終的には,得られた枠組みを実用的な場面へと適用することでその有用性の検証を進めるまでを目的とする.
本年度は,劣モジュラ関数から得られる確率分布を事前分布とするベイズ推論の枠組みについて一般化を行った.先年度は,劣モジュラ関数のロヴァース拡張を正則化項とする線形回帰においては,このようなベイズ推論が,一定の仮定の下で効率的に計算可能な最適化問題へと帰着されることについて示した.本年度はこれを一般化し指数型分布族で表される条件付き分布を用いた場合について枠組みを構築するとともに,その有用性について検証を進めた.
一方,当新学術領域で盛んに議論される,多変量の時系列データの解析手法である動的モード分解についてもいくつかの数理的拡張について検討を行った.例えば,ベイズ的拡張やロバストな推定法などの開発を行いその有用性について検証を行った.

Research Progress Status

29年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

29年度が最終年度であるため、記入しない。

Report

(2 results)
  • 2017 Annual Research Report
  • 2016 Annual Research Report
  • Research Products

    (13 results)

All 2017 2016 Other

All Int'l Joint Research (2 results) Journal Article (9 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 9 results,  Open Access: 3 results,  Acknowledgement Compliant: 3 results) Presentation (2 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Int'l Joint Research] 南洋理工大学(シンガポール)

    • Related Report
      2016 Annual Research Report
  • [Int'l Joint Research] 北京大学/マイクロソフトアジア(中国)

    • Related Report
      2016 Annual Research Report
  • [Journal Article] Bayesian Dynamic Mode Decomposition2017

    • Author(s)
      N. Takeishi, Y. Kawahara, Y. Tabei, and T. Yairi
    • Journal Title

      Proc. of the 26th Int'l Joint Conf. on Artificial Intelligence (IJCAI'17)

      Volume: -- Pages: 2814-2821

    • DOI

      10.24963/ijcai.2017/392

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Sparse Nonnegative Dynamic Mode Decomposition2017

    • Author(s)
      Noya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi
    • Journal Title

      Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP)

      Volume: -- Pages: 2682-2686

    • DOI

      10.1109/icip.2017.8296769

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Structurally regularized non-negative tensor factorization for spatio-temporal pattern discoveries,"2017

    • Author(s)
      Koh Takeuchi, Yoshinobu Kawahara, and Tomoharu Iwata
    • Journal Title

      ECML PKDD 2017: Machine Learning and Knowledge Discovery in Databases

      Volume: -- Pages: 582-598

    • DOI

      10.1007/978-3-319-71249-9_35

    • ISBN
      9783319712482, 9783319712499
    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Koopman Spectral Kernels for Comparing Complex Dynamics: Application to Multiagent Sport Plays2017

    • Author(s)
      K. Fujii, Y. Inaba, and Y. Kawahara
    • Journal Title

      Proc. of the 2017 European Conf. on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD'17)

      Volume: -- Pages: 127-139

    • DOI

      10.1007/978-3-319-71273-4_11

    • ISBN
      9783319712727, 9783319712734
    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Subspace dynamic mode decomposition for stochastic Koopman analysis2017

    • Author(s)
      Takeishi Naoya、Kawahara Yoshinobu、Yairi Takehisa
    • Journal Title

      Physical Review E

      Volume: 96 Issue: 3 Pages: 033310-033310

    • DOI

      10.1103/physreve.96.033310

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Learning Koopman invariant subspaces for dynamic mode decomposition2017

    • Author(s)
      N. Takeishi, Y. Kawahara, and T. Yairi
    • Journal Title

      Advances in Neural Information Processing Systems 30

      Volume: -- Pages: 1130-1140

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Representative selection with structured sparsity2017

    • Author(s)
      H. Wang, Y. Kawahara, C. Weng, and J. Yuan
    • Journal Title

      Pattern Recognition

      Volume: 63 Pages: 268-278

    • DOI

      10.1016/j.patcog.2016.10.014

    • NAID

      40020236977

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Efficient generalized fused Lasso and its applications2016

    • Author(s)
      B. Xin, Y. Kawahara, Y. Wang, L. Hu, and W. Gao
    • Journal Title

      ACM Transactions on Intelligent Systems and Technology

      Volume: 7 Issue: 4 Pages: 1-22

    • DOI

      10.1145/2847421

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Dynamic mode decomposition with reproducing kernels for Koopman spectral analysis2016

    • Author(s)
      Y. Kawahara
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 29 Pages: 911-919

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Nonparametric Bayesian learning of Koopman spectrums in nonlinear dynamical systems2017

    • Author(s)
      Y. Kawahara
    • Organizer
      The 2017 Int'l Symp. on Nonlinear Theory and Its Applications (NOLTA'17)
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 潜在グループ正則化学習におけるグループ構造の自動発見2016

    • Author(s)
      宮澤桂, 河原吉伸, 鷲尾隆
    • Organizer
      第30回人工知能学会全国大会
    • Place of Presentation
      小倉
    • Related Report
      2016 Annual Research Report

URL: 

Published: 2016-04-26   Modified: 2022-01-31  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi