Efficient Thermal Spin Conversion in Spin-spiral Systems
Publicly Offered Research
Project Area | nano spin conversion science |
Project/Area Number |
17H05173
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Tohoku University |
Principal Investigator |
Tretiakov Oleg 東北大学, 金属材料研究所, 助教 (50643425)
|
Project Period (FY) |
2017-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | Spin spiral textures / Thermal gradients / Curvature effects / Spin-orbit interaction / spin spiral textures / curvature effects / thermal gradients |
Outline of Annual Research Achievements |
Micromagnetic simulations for skyrmions and domain walls in the spin-spiral systems with Dzyaloshinskii-Moriya interaction were performed and an analytical theory for domain wall motion resulted in Phys. Rev. B 99, 060407(R) (2019). We studied the structure and dynamics of magnetic domains in synthetic antiferromagnets based on Co/Ru/Co films. We have shown that dramatic effects arise from the interaction among the topological defects comprising the dual domain walls in these structures. These features allowed us to work on the enhanced control of domain-wall motion in synthetic antiferromagnets with the potential for future devices [Sci. Rep. 8, 15794 (2018)].
We demonstrated that the nontrivial magnetic texture of antiferromagnetic Skyrmions promotes a nonvanishing topological spin Hall effect on the flowing electrons. This effect results in a substantial enhancement of the nonadiabatic torque and, hence, improves the Skyrmion mobility [Phys. Rev. Lett. 121, 097204 (2018)]. Furthermore, we identified the dynamics of the antiferromagnetic skyrmion induced by a magnetic anisotropy gradient [Phys. Rev. B 98, 134448 (2018)]. We also showed that skyrmion-based spin torque nano-oscillators are potential next-generation microwave signal generators. We proposed to use the circular motion of an antiferromagnetic skyrmion to create an oscillation signal to overcome this obstacle. Furthermore, the speed of the circular motion for an antiferromagnetic skyrmion in a nanodisk was analytically derived and agreed well with simulations [Appl. Phys. Lett. 114, 042402 (2019)].
|
Research Progress Status |
平成30年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
平成30年度が最終年度であるため、記入しない。
|
Report
(2 results)
Research Products
(49 results)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[Presentation] Theory of Skyrmion Hall Effect2017
Author(s)
O. A. Tretiakov
Organizer
International Workshop “Collective Spin Transport in Electrical Insulators”, International Institute of Physics, Natal, Brazil
Related Report
Int'l Joint Research / Invited
-
-
-