Publicly Offered Research
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
当研究では、医用画像の正常のアピアランス(対象臓器内部の各ボクセルの輝度値)の空間的な分布を深層学習を用いて統計学的モデル化した。2018年度では、主に2つの研究を行った。一つ目はPET-CTを対象とした研究であり、胸部のPET-CTの3次元CT画像を入力すると、PET画像での各ボクセルでのSUV(standard uptake value)値の推定値と推定誤差を出力するようなネットワークを学習した。学習は正常症例のみで行い、評価は異常症例で行って、推定値・誤差よりzスコアを各ボクセルで計算し、視覚化することにより異常検知を行った。FROCカーブを用いて評価を行い、症例あたりの偽陽性数3個のときに感度91%という結果を得た。本研究は第1回日本医用画像人工知能研究会学術集会にて発表された。二つ目の研究は時系列の体部CTを用いた新規骨転移の強調表示アプリケーションの開発である。前回のCT画像から、深層学習を用いて今回のCTでの各ボクセルの推定値・推定誤差を算出し、これを用いて各ボクセルでz-scoreを計算し、これを強調表示する手法をとった。本研究は国際学会であるCARS2018にて発表された。
平成30年度が最終年度であるため、記入しない。
All 2019 2018
All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (3 results) (of which Int'l Joint Research: 2 results)
International Journal of Computer Assisted Radiology and Surgery
Volume: epub ahead Issue: 12 Pages: 2095-2107
10.1007/s11548-019-01942-0