Magnetotransport in strongly correlated non-centrosymmetric f-electron materials
Publicly Offered Research
Project Area | J-Physics: Physics of conductive multipole systems |
Project/Area Number |
18H04316
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Research Institution | Kyoto University |
Principal Investigator |
Peters Robert 京都大学, 理学研究科, 講師 (80734293)
|
Project Period (FY) |
2018-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | noncentro symmetric f / Rashba interaction / magnetism / Kondo effect / exceptional points / strong correlations / dynamical mean field / quantum oscillations / f-electron materials / spin-orbit interaction / non-centrosymmetric / spintronics / transport properties |
Outline of Annual Research Achievements |
In the last year, we have focused on the interplay between the Kondo effect and magnetic properties (1) and at the influence of a Rashba-like hybridization on the emergence of exceptional points (2) in non-centrosymmetric f-electron materials. (1) As commonly known in f-electron materials, the magnetic phase competes with the paramagnetic phase dominated by the Kondo effect. In non-centrosymmetric f-electron materials, the Rashba interaction affects both phases by splitting the electronic bands for different spin-directions. We found that the Rashba interaction can strengthen the antiferromagnetic phase in these materials. An antiferromagnetic phase is formed in the non-centrosymmetric system even for hybridization strengths, for which in the centrosymmetric system, the Kondo effect dominates, and a paramagnetic phase is formed. Most strikingly, we found that this antiferromagnetic phase with strong Rashba interaction is metallic, and we were able to show that this metallic antiferromagnetic phase exhibits a strong magnetoelectric effect, which can be used for spintronics devices. (2) In a second project, we have analyzed the emergence of exceptional points in f-electron materials with Rashba-like hybridization. We have demonstrated that the exceptional points can occur in these materials, which are connected by Fermi arcs. Furthermore, we have shown that there are complex manifolds of exceptional points in the combined space of momentum and energy, which change their shape when the temperature is increased or decreased.
|
Research Progress Status |
令和元年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和元年度が最終年度であるため、記入しない。
|
Report
(2 results)
Research Products
(18 results)