目的志向的な相互作用を含む集団移動系列・経路の解析手法の開発
Publicly Offered Research
Project Area | Systems Science of Bio-navigation |
Project/Area Number |
19H04941
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Complex systems
|
Research Institution | Nagoya University |
Principal Investigator |
藤井 慶輔 名古屋大学, 情報学研究科, 准教授 (70747401)
|
Project Period (FY) |
2019-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2019: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 集団運動 / 移動系列 / 機械学習 / スポーツ / 移動軌跡 / スポーツ科学 / 身体運動 / 動的モード分解 |
Outline of Research at the Start |
複雑な動きをみせる生物などの群れでは、目的志向的な味方や外敵などの移動体との協力・逃避などの相互作用が起きている。一般に集団移動運動に関するデータ駆動的な解析手法においては、方法論的に明示的なモデルを仮定することが難しいため、未だ相互作用の性質を明らかにする決定的な方法論が確立されていない。そこで本研究では工学的な目標として、集団移動系列・経路データから相互作用を可視化して分類や予測を行う手法を開発し、その科学的な応用として、目的志向的な生物集団移動の機能や原理などを発見・理解することを目的とした研究を行う。
|
Outline of Annual Research Achievements |
本研究では工学的な目標として、集団移動系列・経路データから相互作用を可視化して分類や予測を行う手法を開発し、その科学的な応用として、目的志向的な生物集団移動の機能や原理などを発見・理解することを目的とする。当該年度は、複数人の移動軌跡の方策をモデリングするための部分観測と機械的制約による機械学習手法を開発した。この研究の目的は、生物学的制約を考慮した長期予測・操作可能な集団運動のシミュレーションを行うことにあり、部分観測過程と力学的制約を導入した分散型模倣学習モデルを提案した。その結果、バスケットボールやサッカーのような集団スポーツにて、正確な長期予測と観測を操作した反事実的予測が可能であることを示した。この研究は現在機械学習の国際会議に投稿中である。その他にも、スポーツ習慣のある統合失調症患者の認知機能と、3対1の対人協調の関係について明らかにした。この研究成果は、PLoS One誌に採択された[1]。その他にも、スポーツの戦術評価を反映した模倣学習による軌道予測に関する研究を行った。この研究は、国際会議IEEE 9th Global Conference on Consumer Electronics (GCCE 2020)に採択された。
|
Research Progress Status |
令和2年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和2年度が最終年度であるため、記入しない。
|
Report
(2 results)
Research Products
(15 results)