• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of AI models for seed and insect classification

Publicly Offered Research

Project AreaExcavating earthenware: Technology development-type research for construction of 22nd century archeological study and social implementation
Project/Area Number 21H05355
Research Category

Grant-in-Aid for Transformative Research Areas (A)

Allocation TypeSingle-year Grants
Review Section Transformative Research Areas, Section (I)
Research InstitutionKumamoto University

Principal Investigator

MENDONCA・DOS・SANTOS ISRAEL  熊本大学, 大学院先端科学研究部(工), 助教 (20900161)

Project Period (FY) 2021-09-10 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥7,540,000 (Direct Cost: ¥5,800,000、Indirect Cost: ¥1,740,000)
Fiscal Year 2022: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2021: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
KeywordsClassification potsherds / deep learning / machine-leaarning / ensemble / computer-vision / machine learning / archeology / pottery indentation / computer vision / small-dataset training / archaeology / impression method / 人工知能 / 機械学習 / AI同定法 / X線機器 / 土器圧痕
Outline of Research at the Start

本研究は、土器に残された種実・昆虫圧痕の分析・同定を可能にするAIモデルを開発する ことが主な目的である。近年、考古学の世界では、土器のX線CT画像を撮影し、分析するこ とで新たな発見が確認されているが、この分析には一部の研究者に限られた高度な専門知識 と長年の経験が必要である。したがって、より広範囲、多量の土器を効率よく分析するため には、以上に示した考古学研究者の知見(分析基準)を備えたAIモデルの開発が必至である。 具体的には、長年日本考古学の課題と言われているイネの同定を主な目的として、それに類 する種実や昆虫の痕跡を判別できるようにAIモデルを訓練する。

Outline of Annual Research Achievements

Deep Learning models have achieved high accuracy in the experimental dataset, demonstrating their capability to learn complex patterns and make accurate predictions. However, when applied to the Jomon dataset, the accuracy was lower than the experimental dataset. Nevertheless, experiments revealed that the models were relying on the morphology of the object to make predictions, which indicates that the results are reliable.
Despite the challenges faced, we remain remain optimistic about the potential of deep learning models to aid the classification of potsherds. Our experiments have shown that the models can rely on object morphology to make accurate predictions, indicating their effectiveness in supporting archaeologists in their studies.

Research Progress Status

令和4年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和4年度が最終年度であるため、記入しない。

Report

(2 results)
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • Research Products

    (5 results)

All 2023 2022 2021

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results) Presentation (4 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results)

  • [Journal Article] Classification of unexposed potsherd cavities by using deep learning2023

    • Author(s)
      Mendonca Israel、Miyaura Mai、Fatyanosa Tirana Noor、Yamaguchi Daiki、Sakai Hanami、Obata Hiroki、Aritsugi Masayoshi
    • Journal Title

      Journal of Archaeological Science: Reports

      Volume: 49 Pages: 104003-104003

    • DOI

      10.1016/j.jasrep.2023.104003

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Automatic classification of Jomon period's potsherds by means of artificial intelligence2022

    • Author(s)
      Mendonca dos Santos Israel, Hiroki Obata
    • Organizer
      Society for East Asian Archaeology Conference 9
    • Related Report
      2022 Annual Research Report 2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] AI x Arqueologia: Utilizando as tecnicas do presente para descobrir os segredos do passado.2022

    • Author(s)
      Israel Mendonca dos Santos
    • Organizer
      Seminarios do IME
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Improving model accuracy by means of explanations2022

    • Author(s)
      Daiki Yamaguchi, Mendonca dos Santos Israel, Masayoshi Aritsugi
    • Organizer
      International Congress on Information and Communication Technology (ICICT)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 考古学X情報工学 コクゾウムシを見つけたい!2021

    • Author(s)
      Mendonca dos Santos Israel, Daiki Yamaguchi, Mai Miyaura, Sakai Hanami, Hiroki Obata
    • Organizer
      サイエンスアゴラ
    • Related Report
      2021 Annual Research Report
    • Invited

URL: 

Published: 2021-10-22   Modified: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi