2023 Fiscal Year Final Research Report
Heterogeneous swarm intelligence: Innovative design of swarm intelligence inspired by collective behavior
Project Area | Heterogeneous swarm intelligence: Innovative design of swarm intelligence inspired by collective behavior of variety of cells |
Project/Area Number |
21H05103
|
Research Category |
Grant-in-Aid for Transformative Research Areas (B)
|
Allocation Type | Single-year Grants |
Review Section |
Transformative Research Areas, Section (II)
|
Research Institution | Tohoku University |
Principal Investigator |
Kano Takeshi 東北大学, 電気通信研究所, 准教授 (80513069)
|
Co-Investigator(Kenkyū-buntansha) |
金子 奈穂子 同志社大学, 脳科学研究科, 教授 (20464571)
末岡 裕一郎 大阪大学, 大学院工学研究科, 助教 (50756509)
梅津 大輝 大阪大学, 大学院理学研究科, 講師 (60620474)
|
Project Period (FY) |
2021-08-23 – 2024-03-31
|
Keywords | ヘテロ群知能 / 自己組織化 / 自己駆動 |
Outline of Final Research Achievements |
This field aims to create a new research domain called 'heterogeneous swarm intelligence' through the fusion of physics, biology, and medical sciences. The coordinating team's main role is to facilitate smooth collaboration among researchers from diverse specialist fields and establish a framework for collecting information widely from domestic and international related fields. During the research period, we held a total of 15 research meetings online and in person, facilitated smooth collaboration among members via Slack, disseminated research outcomes through our website, introduced the field at the Japan Science and Technology Agency kickoff meeting, held an interdisciplinary research exchange meeting for transformative research areas B, organized mini-symposiums and workshops with domestic and international researchers at conferences, and planned a special issue on group intelligence for an international academic journal.
|
Free Research Field |
数理モデリング
|
Academic Significance and Societal Importance of the Research Achievements |
生物の群れが示す知能的な振る舞いは、群れの構成要素間の局所的なやり取りによって創発的に生み出されている。本領域は、様々な性質を持つ群れの構成要素が変動環境下において適切な役割を自身で見つけながら秩序を創発し、高い機能を発揮し続けるヘテロな群知能システムの設計原理を明らかにすることを目指している。生物学的手法による高精度の実データ解析と数理モデリングによる構成論的アプローチの融合により原理を抽出できた点,さらに、それが群ロボットの開発等の応用につながり得る点に学術的意義がある.また,学際的な新しい学問分野をホームページ等により社会に発信できた点に社会的意義がある.
|