• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Interface control of heterojunctions including singularity structures for advanced electron devices

Planned Research

  • PDF
Project AreaMaterials Science and Advanced Elecronics created by singularity
Project/Area Number 16H06421
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Science and Engineering
Research InstitutionHokkaido University

Principal Investigator

Hashizume Tamotsu  北海道大学, 量子集積エレクトロニクス研究センター, 特任教授 (80149898)

Co-Investigator(Kenkyū-buntansha) 赤澤 正道  北海道大学, 量子集積エレクトロニクス研究センター, 准教授 (30212400)
佐藤 威友  北海道大学, 量子集積エレクトロニクス研究センター, 准教授 (50343009)
Project Period (FY) 2016-06-30 – 2021-03-31
KeywordsGaN / AlGaN / 異種接合 / C-V / MOS / 界面準位 / 電気化学エッチング
Outline of Final Research Achievements

We have investigated interface properties of Schottky and MOS structures with a non-polar m-plane GaN surface and processed GaN surfaces by a plasma-assisted etching, an ion implantation and a high-temperature annealing. The detailed electrical characterization detected various kinds of electronic states created at the GaN surfaces. Then, a chemically stable HfSiOx gate with a high permittivity has been applied to AlGaN/GaN high-electron-mobility transistors (HEMTs), resulting in excellent I-V characteristics with a slight fluctuation of threshold voltage. In addition, a recess-gate GaN MOS HEMT was fabricated using an electrodeless photo-assisted electrochemical etching. The DC characterization showed a precise control of threshold voltage in the I-V characteristics of the recess-gate MOS HEMT.

Free Research Field

半導体デバイス工学

Academic Significance and Societal Importance of the Research Achievements

種々のプロセスに曝されたGaN表面には、特有の電子捕獲準位が生成されることが明らかになり、実際のデバイス作製時に導入される電子準位を予見し、その制御指針を立てる上で本研究成果は重要な意味を持つ。また、MOSゲート構造はトランジスタの中枢部であるため、本研究で得られたMOS界面特性の解明、光電気化学プロセスによる精密ゲート制御、MOS型高電子移動度トランジスタの安定動作は、次世代の超高周波増幅システムおよび高効率電力変換システムに対応するGaNトランジスタの研究進展に貢献すると考えられる。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi