2021 Fiscal Year Final Research Report
Comprehensive analysis of omics adaptability in hybrid species
Project Area | Determining the principles of the birth of new plant species: molecular elucidation of the lock-and-key systems in sexual reproduction |
Project/Area Number |
16H06469
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Biological Sciences
|
Research Institution | Humanome Lab., Inc. (2020-2021) National Institute of Advanced Industrial Science and Technology (2016-2019) |
Principal Investigator |
Sese Jun 株式会社ヒューマノーム研究所, 本社, 代表取締役社長 (40361539)
|
Co-Investigator(Kenkyū-buntansha) |
清水 健太郎 横浜市立大学, 木原生物学研究所, 客員教授 (10742629)
孫 建強 国立研究開発法人農業・食品産業技術総合研究機構, 農業情報研究センター, 主任研究員 (90838624)
|
Project Period (FY) |
2016-06-30 – 2021-03-31
|
Keywords | ハイブリッド / 異質倍数体 / 遺伝子発現 / ゲノム / 機械学習 |
Outline of Final Research Achievements |
We investigated the molecular basis of the new hybrid ability to adapt to the environment and constructed a method for predicting environmental adaptation. Specifically, (1) Participated in the international consortium of the Wheat 10+ Genome Project and decoded the genome of Norin 61. (2) Constructed a two-step prediction method, which is a machine learning method that predicts phenotypes from the weather. The prediction accuracy was significantly higher than the existing predictions, and it was clarified which meteorological factors affect the phenotype. (3) Conducted a survey on the large-scale genomic change "genome shock" that occurs during hybrids. Within the scope of our study, large-scale genome shock did not occur during hybrids, suggesting that the acquisition of a range of adaptability through gene redundancy is important for the acquisition of environmental adaptability.
|
Free Research Field |
生命情報学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、ハイブリッド新種の一つとしてコムギをターゲットにした。コムギのゲノム解析を国際コンソーシアムで実施し、世界に先駆けてコムギ全ゲノムを明らかにした。これにより、コムギの育種や気象変動による影響の解析などが進み、気象変動による飢餓の問題などへの対応が進む可能性が高い。一例として、本研究内で人工的な温暖化環境がコムギの成長に与える影響を計測し、さらに機械学習を用いることで、気象変動に対する影響の予測を実施した。
|