2021 Fiscal Year Final Research Report
Creation of Optical Forces: Developing new manipulation methods utilizing the resonant linear and nonlinear optical responses of matter systems
Project Area | Nano-Material Manipulation and Structural Order Control with Optical Forces |
Project/Area Number |
16H06505
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Institute for Molecular Science |
Principal Investigator |
Okamoto Hiromi 分子科学研究所, メゾスコピック計測研究センター, 教授 (20185482)
|
Co-Investigator(Kenkyū-buntansha) |
伊都 将司 大阪大学, 基礎工学研究科, 准教授 (10372632)
庄司 暁 電気通信大学, 大学院情報理工学研究科, 准教授 (20437370)
芦田 昌明 大阪大学, 基礎工学研究科, 教授 (60240818)
熊倉 光孝 福井大学, 学術研究院工学系部門, 教授 (30324601)
|
Project Period (FY) |
2016-06-30 – 2021-03-31
|
Keywords | 光マニピュレーション / ナノ光学 / 非線形光学 / 偏光特性 / 光圧 |
Outline of Final Research Achievements |
As the manipulation of materials by optical forces, optical tweezers, for example, have been utilized practically and the apparatuses are commercialized. In there, the target material to manipulate is in most cases micrometer-scale particles transparent at the wavelength of the light for manipulation. In the present project, we intentionally utilized the optical characteristics of the material, such as resonance and nonlinear optical effects and polarization characteristics, to develop a variety of manipulation methods. We achieved control of trapping position by UV light for particles containing molecules that undergo structural changes under the UV light illumination, control of trapping force for chiral nanoparticles with circularly polarized light, and so forth. In the environment of superfluid liquid He with almost no viscosity, particle motion was found to be controllable with very weak light.
|
Free Research Field |
物理化学,ナノ光学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、光圧に対する物質の多様な光学特性の効果の解明と、その利用による光による多様な物質操作手法の開拓を行ってきた。様々な新たな光圧操作の自由度を提供し、光圧物質操作の可能性を大きく拡げる学術的意義がある。将来的に、物理、化学、工学に加え、生命科学や医科学にもその波及効果が及ぶ可能性を秘めている。新たな電子材料の選別、配置、操作に対する有用なツールに発展するポテンシャルがあり、将来のナノ物質関連産業にも貢献しうる。
|