• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Creation of Anisotropic Electronic Functions Based on Assembling Asymmetric Electron Transfer Unit

Planned Research

  • PDF
Project AreaCoordination Asymmetry: Design of Asymmetric Coordination Sphere and Anisotropic Assembly for the Creation of Functional Molecules
Project/Area Number 16H06523
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Science and Engineering
Research InstitutionUniversity of Tsukuba

Principal Investigator

Nihei Masayuki  筑波大学, 数理物質系, 教授 (00359572)

Co-Investigator(Kenkyū-buntansha) 大塩 寛紀  筑波大学, 数理物質系, 教授 (60176865)
Project Period (FY) 2016-06-30 – 2021-03-31
Keywords非対称 / 電子移動 / 多核錯体 / 磁性 / スイッチング
Outline of Final Research Achievements

In contrast to the symmetric electron transfer between homo-redox sites, asymmetric electron transfer between hetero-redox sites associates large entropy change as well as significant physical property changes. This project aimed at creation of electronic asymmetry units exhibiting directional electron transfers induced by heat, light, and chemical stimuli. In addition, low-dimensional aggregates through hydrogen bonding interactions were synthesized to explore specific physical properties based on the low-dimensional electronic systems. As a result, versatile strategy to obtain directional electron transfer systems has been established. In addition, new physical properties such as symmetry breaking phase transitions have been achieved, which were originating from the directional and cooperative electron/proton transfers.

Free Research Field

錯体化学

Academic Significance and Societal Importance of the Research Achievements

従来の動的対称性制御は、幾何構造の精密制御に基づくものがほとんどであった。これに対して、本研究で見出した非対称電子移動に基づく対称性の動的制御は、様々な外部刺激によって引き起こすことが可能であるとともに、極めて論理的に設計が可能である。さらに、本研究における対称性制御は固体状態、溶液中を問わず様々な場において可能と期待される。すなわち、動的対称性制御に基づく動的キラリティーに基づく新たな磁気・光学デバイス開発の基盤として、また基礎学術的な観点からも、その意義は大きいと考えられる。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi