2021 Fiscal Year Final Research Report
Creation of helical biopolymer-integrated softcrystal and its application to photo-electronic devices
Project Area | Soft Crystals: Science and Photofunctions of Easy-Responsive Systems with Felxibility and Higher-Ordering |
Project/Area Number |
17H06377
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Chiba University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
中村 一希 千葉大学, 大学院工学研究院, 准教授 (00554320)
|
Project Period (FY) |
2017-06-30 – 2022-03-31
|
Keywords | DNAソフトクリスタル / 発光錯体 / 電気化学発光ECL素子 / ECLアップコンバージョン / 円偏光発光 / 分子配向分極 / OTFTメモリー |
Outline of Final Research Achievements |
In A03-04 planning project, the preparation of DNA softcrystal composed of functional molecules and structurally and electronically featured DNA was achieved, and its application to novel electrochemical system and OTFT memory device was demonstrated. For electrochemical application, the electrochemiluminescent (ECL) device fabricated by sandwiching electrolyte solution in between a pair of DNA/emissive Ru complex hybrid film-modified electrodes surprisingly showed ultra-fast emission response with several tens micro-sec. Further, ECL photon-upconversion was first demonstrated by adding blue-light emissive anthracene derivatives into the electrolyte solution of the DNA ECL cell. In this cell, blue emission was observed by applying lower voltage effective for Ru complex emission. We also enabled novel emissive materials with stronger emission enhancement and high CPL dissymmetry factor by hybridizing chiral Eu complex with DNA.
|
Free Research Field |
光電機能デバイス関連材料
|
Academic Significance and Societal Importance of the Research Achievements |
ECLは高感度定量分析等で実用化されているが,発光デバイスとしては単純セル構成,湿式法素子作成等優れた利点があるものの,応答性の遅さや低輝度,短素子寿命等改善が必要である。交流駆動により素子特性は改善したが,依然高速応答や長寿命化が望まれている。本成果のDNAソフトクリスタルはメゾスコピック結晶状態での高速イオン移動を可能とし,電気化学系では驚異的な数十μ秒の高速発光応答を実現した。また,ECL素子で世界初のアップコンバージョンを確認し,定電圧で高エネルギーな青色発光を確認した。これら成果は高IF誌表紙への採択など客観的にも学術的意義を持ち,素子長寿命化も含めた社会的意義も高い成果と思える。
|