2021 Fiscal Year Final Research Report
Unified comprehension of chemical communication by natural PKC ligands and development of new medicinal seeds
Project Area | Frontier research of chemical communications |
Project/Area Number |
17H06405
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Kyoto University |
Principal Investigator |
Irie Kazuhiro 京都大学, 農学研究科, 教授 (00168535)
|
Co-Investigator(Kenkyū-buntansha) |
柳田 亮 香川大学, 農学部, 准教授 (10598121)
塚野 千尋 京都大学, 農学研究科, 准教授 (70524255)
村上 一馬 京都大学, 農学研究科, 准教授 (80571281)
|
Project Period (FY) |
2017-06-30 – 2022-03-31
|
Keywords | プロテインキナーゼC / 発がんプロモーター / ホルボールエステル / アプリシアトキシン / 機械学習 / アロタケタール / HIV / アルツハイマー病 |
Outline of Final Research Achievements |
Protein kinase (PKC) isozymes involved in cell surface signal transduction are one of the targets of intractable diseases such as cancer, Alzheimer's disease, and HIV infection. 10-Me-Aplog-1, the simplified analog of proinflammatory aplysiatoxin, is a potent PKC ligand with little tumor-promoting and proinflammatory activities. We showed that 10-Me-Aplog-1 becomes a promising medicinal lead for the above-mentioned intractable diseases through activation of PKCα and δ. In addition, its further structural modification paved the way for development of PKC isozyme-selective ligands. On the other hand, new PKC ligands were searched by machine-learning, and the alotaketals isolated from marine sponge were identified as new PKC ligand candidates. Their simplified analogs designed by the docking simulation against PKCδ-C1B were synthesized to be assayed for PKC isozyme surrogate binding. One of the ligands exhibited a higher affinity for PKCα-C1A than for PKCδ-C1B.
|
Free Research Field |
天然物有機化学、生物有機化学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究代表者らが開発した10-Me-Aplog-1のPKCアイソザイムを介した化学シグナルを理解するとともに,本化合物が,がん,アルツハイマー病,HIV感染症などの難治性疾患に対する治療薬シードになりうることを明らかにした.複雑な天然物を適切に単純化することにより,必要な活性のみを抽出した新規医薬品シーズを得るという新しい方法論を提示できた.さらに機械学習により新規PKCリガンドとしてアロタケタール類を同定し,ドッキングシミュレーションにより設計・合成した複数の化合物の中から,PKCアイソザイム選択性を有する新規リガンドを開発できた点も、新薬の効率的な開発に繋がる意義のある研究と考えている。
|