2022 Fiscal Year Final Research Report
Development of highly efficient and selective photocatalyst systems for CO2 reduction using H2O as an electron donor
Project Area | Creation of novel light energy conversion system through elucidation of the molecular mechanism of photosynthesis and its artificial design in terms of time and space |
Project/Area Number |
17H06440
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Complex systems
|
Research Institution | Tokyo University of Science |
Principal Investigator |
Kudo Akihiko 東京理科大学, 理学部第一部応用化学科, 教授 (60221222)
|
Co-Investigator(Kenkyū-buntansha) |
石谷 治 東京工業大学, 理学院, 教授 (50272282)
|
Project Period (FY) |
2017-06-30 – 2022-03-31
|
Keywords | 人工光合成 / 二酸化炭素還元 / 半導体光触媒 / 分子光触媒 / 水 / メタン / Z スキーム / 電子 |
Outline of Final Research Achievements |
Ag/SrTiO3:Rh-BiVO4 and (CuGa)1-xZn2xS2-RGO-CoOx/BiVO4 were developed as Z scheme photocatalysts working under VIS for CO2 reduction using water as an electron donor. Rh-Ru, Pd-Ru, Pt-Ru cocatalysts were found for CO2 reduction to form CH4 efficiently using NaTaO3:Sr of a wide band gap photocatalyst. A three-metal nuclear complex photocatalyst consisting of Ru(II), Os(II), and Re(I) was successfully synthesized and showed 4300 of a turnover number for CO2 reduction. A mechanism of photocatalytic CO2 reduction using RuC2Re molecular photocatalyst was clarified. [Ru(dpbpy)] or [Co-dmbpy]-employed (CuGa)1-xZn2xS2+BiVO4 Z scheme photocatalyst and Ru(II)-Ru(II) supermolecule(RuP4Ru)-modified Ag/TaON photocatalyst were developed as a semiconductor-molecular hybrid photocatalyst for CO2 reduction.
|
Free Research Field |
触媒化学,光化学,無機材料化学
|
Academic Significance and Societal Importance of the Research Achievements |
光触媒を用いた二酸化炭素において,可視光を効率良く使えない,効率が低い,水を電子源として使えないという3つの大きな課題点があった.これらの課題点に対して,水を電子源とした高選択的な二酸化炭素還元に活性を示す半導体・分子光触媒を基盤とした可視光応答性Zスキーム光触媒の開発に成功したことは,光触媒,二酸化炭素の資源化という人工光合成の研究分野において,学術的に大いに意義がある.これらの経過はまだ基礎研究レベルであるが,将来人工光合成の社会実装において,基礎となる技術になると期待される。
|