2021 Fiscal Year Final Research Report
Molecular mechanisms underlying transiency and perpetuality of plant stem cells
Project Area | Principles of pluripotent stem cells underlying plant vitality |
Project/Area Number |
17H06476
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Biological Sciences
|
Research Institution | Nagoya University |
Principal Investigator |
TORII KEIKO 名古屋大学, トランスフォーマティブ生命分子研究所, 客員教授 (60506103)
|
Co-Investigator(Kenkyū-buntansha) |
近藤 侑貴 神戸大学, 理学研究科, 准教授 (70733575)
|
Project Period (FY) |
2017-06-30 – 2022-03-31
|
Keywords | 一過性幹細胞 / 恒久性幹細胞 / 維管束幹細胞 / 対称分裂 / 非対称分裂 / 気孔 / 転写因子競合 / 細胞周期 |
Outline of Final Research Achievements |
Through this funding, we unraveled the fundamental mechanism and regulatory circuitry specifying both transient and perpetual stem cells (stomatal meristemoids and vascular stem cells, respectively). We discovered that MUTE, a master regulator of stomatal fate commitment, drives the transition from stem-cell to differentiation through direct regulation of cell cycle gene expression. MUTE enables the deceleration of rapidly dividing stomatal precursors to execute slow, precise terminal symmetric division, which is critical for proper guard cell identity. The MUTE-orchestrated feed-forward loop enables the robust execution of the single symmetric division to generate a functional stoma with paired guard cells. We developed the VISUAL system to visualize dynamic cell-fate acquisition of vascular stem cells. Leveraged by this system, we discovered that a competition among BES/BZR-family of transcription factor stabilize the stemness of vascular cambiums.
|
Free Research Field |
植物発生遺伝学
|
Academic Significance and Societal Importance of the Research Achievements |
植物の機能特化した細胞組織(気孔や維管束)を生み出す幹細胞の維持と分化メカニズムの解析から、動植物を超えた幹細胞制御ロジックの普遍性と本質が明らかになった。例えば、動物と植物どちらにおいても、細胞周期の減速が幹細胞の分化に関わっている。植物に特異的な細胞周期減速因子を用いて動物幹細胞を制御するなども将来的に可能かもしれない。また、本研究から明らかとなった気孔と維管束幹細胞の維持メカニズムから、将来の気候変動にあわせ植物バイオマス生産のチューニングへの道が拓ける。
|