2022 Fiscal Year Final Research Report
Materials design of high-entropy alloys accelerated by synergistic combination of computational thermodynamics and simulation of phase transformations
Project Area | High Entropy Alloys - Science of New Class of Materials Based on Elemental Multiplicity and Heterogeneity |
Project/Area Number |
18H05454
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Nagoya University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
大谷 博司 公益財団法人豊田理化学研究所, フェロー事業部門, フェロー (70176923)
陳 迎 東北大学, 工学研究科, 教授 (40372403)
及川 勝成 東北大学, 工学研究科, 教授 (70356608)
阿部 太一 国立研究開発法人物質・材料研究機構, 構造材料研究拠点, 主幹研究員 (50354155)
|
Project Period (FY) |
2018-06-29 – 2023-03-31
|
Keywords | 状態図 / 拡散 / 機械学習 / CALPHAD法 / フェーズフィールド法 / 第一原理計算 |
Outline of Final Research Achievements |
It was logically elucidated from the CALPHAD method that the disordered state of HEAs is macroscopically close to an ideal solution. From the cluster expansion method and Monte Carlo simulations, we proposed that phase equilibria involving atomistic ordered structures can exist microscopically within the solid solution. By applying machine learning to first-principles calculations, we developed a method of searching for alloy compositions that exhibit superior material properties. The ternary alloy systems within Cantor alloy were investigated, and we determined the experimental phase diagram mainly for the σ-phase region. A module to calculate the grain boundary segregation in multicomponent alloys was developed. It was clarified based on the multicomponent diffusion theory that the sluggish diffusion cannot be explained by the high-entropy effect. We proposed a methodology for estimating material parameters from microstructural information based on the inverse problem methods.
|
Free Research Field |
材料組織学
|
Academic Significance and Societal Importance of the Research Achievements |
学術的意義は、HEA不規則固溶体の熱力学的安定性と拡散現象の理解が大きく深化した点である。典型的なHEAであるCantor合金の実験状態図と拡散情報が精査された点も大きい。社会的意義としては以下を開発した(本研究は、社会還元として個別材料の開発ではなく、広くHEA開発に活用できる手法開発に重点を置いている)。機械学習、第一原理電子状態図計算、およびモンテカルロ法の連携から、HEA固溶体の安定性や平均原子変位を解析する手法を開発した。多成分系粒界偏析の系統的な計算システムを作成・公開した。フェーズフィールド法と拡散実験データの連携から、各種材料パラメータを逆問題式に推定する手法を構築した。
|